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Abstract: This paper deals with problem of speech enhancement using Bionic wavelet transform and recurrent neural 
network. Indeed this work describes a new method to remove additive background noise from noisy speech. The 
method can be divided into two stages, the first is the application of the Bionic wavelet transform to the speech signals 
and the second consists in applying an Elman neural network to find an optimal thresholding set to remove related noise 
wavelet coefficients. Simulation results show good performances of the proposed technique in comparison with respect 
to many other methods.  
Key words: Speech enhancement, Bionic wavelet transform, Threshold, Spectral subtraction, Elman neural network.   

INTRODUCTION 
In speech signal processing, the presence of 

background noise is a very important problem. In fact 
the noise existence can affects the performances of 
speech recognition, coding and synthesis. Generally 
speaking, there are different types of noise depending 
on the way of contamination. So we distinguish three 
forms of noise: convolutive, multiplicative and 
additive. We will be interested to the latter one. A 
noisy speech signal with an additive noise can be 
expressed as [VAN93]: 

x(t) =  s(t) + b(t) (1) 

 

where x(t), s(t) and b(t) represent respectively the 
noisy speech signal, the clean speech signal and the 
noise signal. 

      Hence the problem of speech enhancement 
consists in removing the noise signal and in improving 
the cleaned signal quality. In other word, the influence 
of the noise have to be reduced and ameliorating the 
quality of the speech signal by determining an 
estimate of the clean speech signal, )(ˆ ts which should 
be optimal and favoured by a human listener. In 
practice, Background noise removal is a very difficult 
task and it is generally followed by quality 
degradation. Traditional algorithms of speech 

enhancement include the Wiener filtering, spectral 
subtraction and denoising methods based on 
microphone array. The wavelet transform 
discriminates itself in non stationary signals analysis  
such as speech signal. A denoising method based on 
wavelet coefficients thresholding, has been introduced 
by Donoho [DON95]. This method has proved its 
efficiency in white noise reduction. Actually, several 
methods use the wavelet thresholding [SEO97], 
[BAH01], [SHE01], [CHA02]. Analysis in wavelet 
domain is based on the modelling of pre-post 
perceptual periphery; hence some efforts have been 
performed for employing this processing tool in 
speech denoising. This approach makes an association 
between the nonlinear filtering and multi-resolution 
analysis [XIA03, MAL89]. While the technique based 
on wavelet doesn’t require a noise or speech model 
and can be applied to a broader signals class, just a 
general thresholding of the wavelet coefficients 
doesn’t guarantee a good performance. The Bionic 
wavelet transform introduced by J.Yao and 
Y.T.Zhang[XIA03] provides a better concentration of 
the signal energy. Furthermore it gives better 
selectivity of time-frequency and this will be expected 
to yield far more efficient performance of 
thresholding. In this paper, we use a recurrent neural 
network for determining suitable thresholds to be 
employed to threshold the bionic wavelet coefficients. 
In fact, the success of the classical thresholding 
techniques is based on the suitable choice of the 
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values of the thresholds to be employed. Our speech 
enhancement method is inspired from the technique of 
wavelet denoising of speech using neural networks for 
threshold selection. This technique is introduced by 
C.A. Medina & al[MED03]. It consists in applying the 
discrete wavelet transform to the noisy speech signal 
and applies a level dependent threshold for each band. 
These thresholds are determined by applying a neural 
network for each band.  In this paper we first dealing 
with speech denoising techniques based on wavelets, 
second we are interesting in bionic wavelet transform 
and its employment in speech enhancement and third 
we deal with recurrent neural networks more 
specifically Elman neural network. Finally we present 
our proposed speech denoising technique and give 
some simulation results. 

 

1. Wavelet based denoising approaches   
The traditional techniques of signal denoising, 

used Fourier analysis. This is based on the fact that the 
noise is principally manifested as high frequency 
oscillations. Bearing this in mind, signals is 
decomposed into sinusoidal waveforms having 
different frequencies and low frequency components 
are only used when reconstructing the enhanced 
signal. The denoising techniques based on wavelet, 
suppose that the signal analysis at different resolutions 
might improve the true underlying signal separation 
from noise. Since the discrete wavelet transform 
(DWT) is orthogonal and linear, consequently when 
transforming white noise in time domain, we obtain a 
white noise in the wavelet domain. It also enables 
compact coding, since the wavelet coefficients of the 
details possess high absolute values only in the 
intervals of rapid time series change. These proprieties 
led Donoho and Johnstone [DON94] to suggest a 
thresholding denoising approach. The three following 
steps summarise this approach: 

 
-Apply the discrete wavelet transform: 
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to noisy signal, )(tx given by (1), where b is a 
Gaussian white noise having 2σ as a variance. In 
wavelets domain, we have: 
 

bsx WWW +=  (3) 

 
-Apply thresholding to the obtained wavelet 
coefficients.  
 
-obtain the enhanced signal x~ by applying the inverse 
transform 1−W  to the thresholded wavelets 
coefficients vector THY :  

                                          (4) 

THYWx 1~ −=  (4) 

 

The thresholding is non linear and generally is hard or 
soft. The thresholding denoising approach, is based on 
the fact that the energy of the clean signal is 
concentrated in small number of great wavelet 
coefficients although the noise contaminates all 
coefficients. For handling Gaussian white noise, 
Donoho has employed a universal threshold which is 
expressed as follow: 

)log(2ˆ nσλ =  (5) 

where n  designates the noisy signal length and 
σ̂ represents the estimate of the noise standard 
deviation, given by:       

6745.0/ˆ MAD=σ  (6) 

with the MAD is the absolute median estimated on the 
first scale. To handle a correlated noise, Johnstone and 
Silverman [JOH97] have suggested a level dependent 
threshold which is defined as:                         

( )nthr jj log2ˆ ⋅= σ  (7) 

 
where 6745.0/ˆ jj MAD=σ   and jMAD  
designates the absolute median estimated at scale j. 
Sungwook Chang, Y. Kwon, Sung-il Yang [CHA02] 
have proposed to employ a node dependent threshold. 
This threshold is applied to each node of the wavelet 
packet tree and is expressed as follow:   
                                  

( )nthr kjkj log2ˆ ,, ⋅= σ  (8) 

 

with 6745.0/ˆ ,, kjkj MAD=σ  and kjMAD , is the 
absolute median estimated at the scale j and subband 
k. 

1.1. Threshold limitation 
The wavelet based denoising method doesn’t 

require a speech or a noise model and can be used to a 
large class of signals. Though a general wavelet 
coefficients thresholding doesn’t ensure a good 
performance as obtained by bionic wavelet transform, 
BWT. The latter owns a better propriety of 
concentration of signal energy and time-frequency 
selectivity. This leads to an efficient thresholding 
performance [XIA03]. 

2. Bionic wavelet transform 
      J. Yao and Y.T. Zhang have proposed the bionic 
wavelet transform (BWT) as a new time-frequency 
technique and this by referring to the perceptual model 
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[YAO01]. The term “bionic” means that it is guided by 
an active biological mechanism [XIA03]. The BWT 
decomposition is both perceptually scaled and 
adaptive [MIC07]. The initial perceptual aspect of the 
transform comes from the logarithmic spacing of the 
baseline scale variables, which are designed to match 
basilar membrane spacing [MIC07]. Then, two 
adaptation factors control the time-support employed 
at each scale, based on a non-linear perceptual model 
of the auditory system [MIC07]. The basis for this 
transform is the Giguerre -Woodland non linear 
transmission line model of the auditory system 
[GIG93, GIG94], an active-feedback electro-acoustic 
model incorporing the auditory canal, middle ear, and 
cochclea[MIC07]. The model yields estimates of the 
time-varying acoustic compliance and resistance along 
the displaced basilar membrane, as a physiological 
acoustic mass function, cochlear frequency-position 
mapping, and feedback factors representing the active 
mechanisms of outer hair cells. The net result can be 
seen as a technique for the estimation of the time-
varying quality factor eqQ of the cochlear filter banks 
as the input sound waveform function [MIC07]. The 
references [GIG94], [ZHE99] and Yao and Zhang 
[YAO01] give the complete details on the elements of 
this model. The BWT adaptive nature is insured by a 
time-varying linear factor ( )τ,aT which represents 
the scaling of the cochlear filter bank quality 
factor eqQ at each scale over time [MIC07]. For each 
scale and time, the adaptation factor of BWT, ( )τ,aT , 
is calculated by employing the update 
equation[MIC07]:  
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(9) 

 

where sC is a constant ( 8.0=sC )that represents 
non linear saturation effects in the cochlear model 
[MIC07, YAO01]. The quantities  1G and 2G are 
respectively, the active gain factor that represents the 
outer hair cell active resistance function and the active 
gain factor that represents the time-varying 
compliance of the Basilar membrane [MIC07]. 
Practically speaking, the partial derivative in (eq.9), 
can be approximated using the first difference of the 
previous points of the BWT at that scale [MIC07]. 

 

      The quantity ( )τ,aX BWT represents the bionic 
wavelet transform of the signal )(tx . It is given by: 
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where ϕ~ is the mother wavelet envelop so we 
have[7]: 

( ) ( ) )exp()
,
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,
1)( 0tj
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τ
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where 0ω is the base fundamental frequency of the 
unscaled mother wavelet. In practice 0ω is equals to 
15165.4 for the human auditory system [YAO01]. The 
discretization of the scale a  is achieved by employing 
a pre-determined logarithmic spacing across the 
desired frequency range, so that at each scale, the 
canter frequency is expressed by[MIC07]: 

( )mm 1623.1/0ωω =  with ,...2,1,0=m    (12) 

      For this implementation, based on original work 
for cochlear implant coding [YAO02], coefficients at 
22 scales, 22,...,7=m , are computed employing 
numerical integration of the continues wavelet 
transform [MIC07]. These 22 scales are corresponding 
to centre frequencies logarithmically spaced from 
225Hz to 5300Hz [MIC07].In the formula (eq.11), the 
role of first factor ( )τ,aT  multiplying a  is to 
ensure that the energy remains the same for each 
mother wavelet. The role of second factor ( )τ,aT is to 
adjust the envelop )(~ tϕ without adjusting the central 
frequency of )(tϕ [ XIA03]. Thus, the main difference 
between (BWT) and the continuous wavelet transform 
(CWT) is based on the fact that the time-frequency 
resolution achieved by (BWT) can be adjusted with 
adaptive manner not only by frequency variation of 
the signal but also by instantaneous amplitudes of this 
signal. That is the mother wavelet that makes adaptive 
the continuous wavelet transform, while the adaptive 
characteristic of the bionic wavelet transform, BWT, 
comes from the mechanism of active control  in the 
human auditory model,  which adjusts the mother 
wavelet associated to (BWT) according to the 
analyzed signal. Basically, the idea of the (BWT) is 
inspired from the fact that we need to make the mother 
wavelet envelop varying in time according the signal 
characteristics. The employed mother waveletϕ in 
[XIA03] is a Morlet wavelet and it’s envelop ϕ~ is 
given by [MIC07]: 
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where 0T  represents the initial time-support.  

 

 
Figure 1.  Morlet wavelet. 
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      It can be shown [XIA03, YAO02] that the obtained 
BWT coefficients, ( )τ,aX BWT  are derived by using 
the following formula [MIC07]: 

( ) ( ) ( )τττ ,,, aXaKaX WTBWT =  (13) 

 

 with ( )τ,aK  satisfying: 

 

( )
( )τ

πτ
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where C represents a normalizing constant calculated 
from the squared mother wavelet integral. This 
representation yields to an effective computational 
technique for calculating in direct manner, the BWT 
coefficients from those of the wavelet transform, WT 
without using the BWT definition given by Eq.(10). 
There are some key differences between the 
discretized CWT employing the Morlet wavelet, used 
for the BWT, and a filterbank based WPT employing 
an orthonormal wavelet, for example the Daubechies 
family, as employed for the comparative baseline 
technique. One is that the WPT is perfectly 
reconstructable, while the discretized CWT is an 
approximation whose exactness depending on the 
number and placement of frequency bands selected 
[MIC07]. To solve this problem, we propose in our 
work, to use 30 scales instead of 22 scales in the 
expression of the discretized CWT using the Morlet 
mother wavelet. This choice of the number of scales 
( 30=N ) is done by simulation: it is suitable for a 
perfect reconstruction of the whole speech signals 
belonging to our Arabic speech signals database.   

 

 

 

 

 

    
Figure 2. Perfect speech signal reconstruction using 
30 Scales.  

2.1. Denoising by BWT 
      The reference [XIA03], gives the principle of 
speech enhancement scheme based on   bionic wavelet 
transform (BWT). This principle is illustrated in figure 
14.  

3. Neural net work and speech 
enhancement 
     There are many research works employing artificial 
neural networks (ANN) to perform nonlinear signal 
filtering for the reason to enhance signal and reduce 
noise. But due to the nonlinear nature, the majority of 
applications have to be developed for specific training 
and are data dependent [NAS04]. Consequently, when 
applying the neural network for nonlinear filtering, we 
have to be able to collect a samples training extensive 
set for the purpose of covering all possible situations 
and developing a neural network for the purpose of 
adapting to the given training set [NAS04]. Suppose 
we have a samples training set ( ) ( ){ }iyiu ,  where 
( )iu represents the input vector and ( )iy  designates 

the output one. The goal of function approximation is 
to make identification of a mapping ϕ  from u to y  
satisfaying ( )uy ϕ= [NAS04, SEO93] such that the 
expected sum of square approximation error 

( ){ }2uyE ϕ−  is minimized. The structures of 
neural networks such as MLP and radial basis 
networks constitute the  good candidate algorithms for 
determining this function, ( )uϕ [NAS04]. Neural 
enhancement methods permit to effectively reduce the 
musical noise effect because of the ability of neural 
networks to provide a signal smoother estimate 
[SHA04, WAN98]. Since the artificial neural networks 
(ANNs) are able to make the approximation of any 
non linear function,  they are appropriate for non 
linear transformations commonly employed in speech 
feature extraction such as Mel frequency, log spectrum 
and cepstral coefficients (MFCCs) [SHA04]. Different 
research works have employed ANNs for speech 
enhancement [JON96], [TAM90], [SEO93]. Classical 
ANNs, in spite of their ability of generalisation, can’t 
easily model the temporal behaviour of speech signal: 
the single way for addressing this issue consists at 
employing a windowed input of time-neighbouring 
features [SHA04]. On the other hand, the recurrent 
neural network, RNN has the ability to deal naturally 
with variable length of speech signal and can detect 
long term contextual effects over time, which can be 
helpful for a better speech enhancement [SHA04]. 
Hence the neural network needs dynamic properties 
(recurrent connections) so that it is able  to respond to 
the temporal behaviours. As an example having these 
proprieties, we can mention the Elman neural network 
which is used in our speech enhancement technique. 
This choice is based on the fact that the Elman neural 
network has been successful for temporal association 
of speech signal moreover it can be easily trained with 
standard back-propagation (BP)[ SEO93, ELM88]. 

3. New proposed Speech enhancement 
technique 
      In this paper, we propose a new speech 
enhancement technique based on BWT by using the 
Elman neural network. This technique is inspired from 
the technique introduced by C.A. Medina & al 
[MED03]. It  consists in applying the discrete wavelet 
transform to the noisy speech signal and then applies 
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one neural network for each decomposition level for 
the purpose of estimating the appropriate value of 
threshold to be applied to that level. Our technique 
consists in applying the bionic wavelet transform to 
the noisy speech frame, x and to the clean speech one, 
s: 

)(xBWTwtb =  (15) 

 

)(sBWTwtc =  (16) 

     The frame length is equal to 512 with 256 as 
overlap. wtb and wtc are two matrixes having a size 
of 51230× ; The application of the BWT is done by 
the  previous mention modification (N=30). The 
Elman neural network is trained by a set of pairs 
( )TP,  where P is the input of the Elman neural 
network and is equals to wtb .T represents the target 
or the desired output of the Elman neural network. It is 
a matrix having the same dimension of P . Each 
coefficient of T , ( ) 5121,301,, ≤≤≤≤ jijiT , is an 
ideal threshold and is chosen to be:        

( )
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where n is the length of the frame and sigma  is the 
noise level. it is selected to be: 

           (14) 

6745.0/):),1(( wtbmadsigma =  (18) 

 

    The employed Elman neural network in this work is 
constituted by two layers, one hidden having four 
unities with ‘tansig’ as an activation function  and one 
output having thirty unities with ‘purelin’ as an 
activation function. The figure 3 illustrates the general 
architecture of the Elman neural network [STE06]. 

 

 

 

 

 

 

 

 

 

 Figure 3.  General architecture of Elman neural 
network.  

      

    The used backpropagation training is ‘traingdx’. 
The performance function is ‘mse’. Training the 
Elman neural networks is done for the purpose to 
generate a sequence of target vectors when this 
network is presented with a given sequence of input 
vectors. In learning phase of our Elman neural 
networks, we use a set of 114 speech signals taken 
from Timit database. In the phase of test we test we 
use 36 speech signals taken from our Arabic database 
and also from Timit database. The figure 4 illustrated 
a training example of our Elman neural network.  

 

 

 

 

 

 

 

      

 

Figure 4.  An example of training of the Elman neural 
network. 

5. Results and evaluations  
      To illustrate the performance of the proposed 
enhancement techniques, we tested them in different 
in various noisy conditions, taken from Noisex-92 
database: white Gaussian noise, F16 cockpit noise and 
Volvo car noise with different values of signal to noise 
ratio, SNR. These values are -5dB, 0dB, 5dB, 10dB 
and 15dB. To evaluate the performance of the speech 
enhancement algorithms, it is necessary to identify the 
differences and similarities in perceived quality and 
subjectively measured intelligibility. Speech quality is 
an indicator of the processed speech signal 
“naturalness”. Speech signals intelligibility is the 
amount measure of speech information present in the 
signal that is responsible for covering what the 
speaker is saying. Tests of performance evaluation can 
be done by objective quality measures or subjective 
quality measures. First, an objective signal to noise 
ratio SNR measure is employed and then we make 
some listening tests. 

5.1. Objective evaluation         
     Objective measures are based on mathematical 
comparison between the original and processed speech 
signals. The measure of the signal to noise ratio, SNR 
is one of the most extensively used. As the name 
suggests, it is computed as the ratio of the signal to 
noise powers in decibels: 
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where s and ŝ are respectively the clean and the clean 
and the enhanced speech signals. 

 

Table 1. Case of wite noise. 

 

Table 2. Case of Volvo noise. 

 

Table 3. Case of F16 noise. 

 

5.2. Subjective evaluation         
      A subjective evaluation is done by making 
listening tests and computation of the recognition rate 
which expressed by: 

100×
wordsemployedtheofnumbertotal

wordsrecognizedtheofnumber  (20) 

      In the listening tests, listeners are listening to the 
enhanced speech signals and say what is said for every 
pronounced sentence. and this for the three different 
cases: white noise, car noise and F16 noise. The 
figures 5, 6 and 7 illustrate the recognition rate vs the 
SNR. 
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Figure 5.  Case of White noise. 
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Figure 6.  Case of Volvo noise. 
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Figure 7.  Case of F16 noise. 
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      Figures 5, 6 and 7 illustrate the three curves 
representing the recognition rate vs the SNR in cases 
of white noise, car noise and F16 noise. This curves 
show clearly that listening tests are in favour of our 
proposed denoising method based on the Elman neural 
network and bionic wavelet transform. Our proposed 
technique presents the best scores when compared to 
the two denoising techniques based on BWT and 
spectral subtraction.  

 

5.3. Speech signal representation 

      The figures, 7, 8 and 9 show the efficiency of our 
proposed method based on BWT and using the Elman 
neural networks. In fact a great amount of noise was 
suppressed while preserving the enhanced speech 
signal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Speech signal corrupted by Car noise with 
SNR=5dB. 
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Figure 9. Speech signal corrupted by White noise with 

SNR=5dB. 
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Figure10. (a) Clean speech, (b) Speech signal 
corrupted by F16 noise with SNR=5dB, (c) Enhanced 
speech by our proposed technique, (e) Enhanced 
speech by spectral subtraction, (f) Enhanced speech 
by bionic wavelet transform. 

 

      The figures 11, 12 and 13 represent respectively 
the spectrograms of clean speech, the noisy speech 
and the enhanced where the noisy speech signal is 
obtained by corrupting the clean speech by F16 noise 
with SNR equals to 5dB. 
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Figure 11.  Clean speech spectrogram. 
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Figure 12. Noisy speech spectrogram (SNR=5dB). 
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Figure 13. Enhanced speech spectrogram. 
 

 

 

 

 
                                 Thresholding 

 
                           Enhanced speech                                                                      Divided by K 

                                                                                                Divide by K                             

 

Figure14. Speech enhancement approach by bionic wavelet transform, BWT. 

 

 

6. Conclusion  
      A new technique for speech enhancement using the 
bionic wavelet transform. For thresholding the bionic 
wavelet coefficient, we employ the Elman neural 
network. This is done for determining the set of 
convenient thresholds. Results obtained from SNR and 
listening tests show the performance of our proposed 
denoising method when compared with the two 
denoising techniques based on BWT and spectral 
subtraction. 
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