The Impact of the Concept of the Family Relative Signatures on the Non-Blind Watermarking in the Multiresolution Domain using 9/7 and 5/3 Wavelets

Ali KHALLALAH and Mohamed Salim BOUHLEL

Research Unit: Sciences and Technologies of Image and Telecommunications, Institut Supérieur de Biotechnologie de Sfax (ISBS) B.P.W, 2163038 Sfax, Tunisiq
khalfallah.ali@laposte.net
medsalim.bouhlel@enis.rnu.tn

Abstract: Digital watermarking is one of many security tools used to guarantee the intellectual property. There are three kinds of watermarking which differ in terms of the available information at the watermarking extraction step. In this study, we will focus on the non-blind watermarking which allows us to use the original host document, the signed document and the author signature. Unlike the classical watermarking approach which refers to the author by his original mark, the concept of the family relative signatures that refers to the author by a family of signatures made up of the relative daughter signatures. Adopting this concept, a daughter relative signature presents the really inserted signature inside the marked image. Consequently, this signature depends on the inserted mark, the host document and the insertion scheme. The established results present an improvement on the correlation rate and the validation rate in the watermarking process especially when we use the 9/7 wavelet.

Key words: Family relative signatures, Multiresolution domain, Non-blind image watermarking, 5/3 wavelet, 9/7 wavelet.

INTRODUCTION

Information security presents a great worry for humanity. Nowadays, many techniques like cryptography, steganography and watermarking are used to ensure safe data transfer or to prove document ownership. In this work, we will focus on image watermarking. Watermarking is viewed as an imperceptible signal insertion into a digital image [KAM 06]. The embedded signal is called signature or mark. Digital watermarking should face up several constraints such as imperceptibility, robustness, insertion capacity, security and complexity.

Watermarking is carried out in two steps. The first step consists of inserting the mark inside the host image. The second step is the mark detection (or extraction). Based on this last step, we can sort out watermarking in three classes. The blind watermarking presents the first watermarking class. Adopting this marking kind, we are authorized to use only the marked image in the detection (or extraction) step [PET 03]. The second watermarking class is called semi-blind watermarking. This kind of digital watermarking allows us to use the author’s mark and the host image in the watermarking second step [KHA 06]. Finally, the third watermarking class is the non-blind watermarking. This watermarking category enables us to use the original image, the author’s mark and watermarked medium in the extraction (or detection) step [KHA 04]. In this study, we are interested in the non-blind image watermarking.

At first, watermarking appears as a powerful tool to ensure intellectual propriety [WON 01]. But, the good performance of this security tools and its easy implementation incite researchers to use it for other applications. Now, digital watermarking is used in many fields. In fact, medicine has benefited from the performance of this tool. So, watermarking is used to preserve medical deontology by inserting the medical diagnostic inside the patient’s image [WOO 05]. Moreover, the insertion of digital fingerprinting permits to reveal the sources of illegal copies [KUN 05]. Additionally, digital watermarking is used in broadcasting supervision [DOE 05]. Finally, we can insert into the host document specific information to assist its indexation [ELA 07] or to check its integrity [FOU 06].
In this study, we will present the concept of family relative signatures for non-blind image watermarking and highlight the contribution of this concept on the watermarking performances in the multiresolution field based on the 5/3 and 9/7 wavelets.

1. Watermarking in multiresolution field

Juste like any signal, the image has many representations. In the spatial domain, the digital image is presented by a matrix. The value of each cell reflects the luminance or the chrominance of the corresponding pixel. The frequency image presentation is obtained using the Discrete Cosine Transform (DCT) or the Discrete Fourier Transform (DFT) which highlights the frequency image repartition [MAC 92]. However, in the multiresolution field, the image representation highlights simultaneously the spatial and frequency repartition of the image. Therefore, this image representation is frequently used in image processing more than ever in JPEG2000 compression [MAS 06]. Hence, we will adopt this image representation in our non-blind image watermarking approach. To transform an image to this multiresolution field we have to use wavelets.

1.1. Multiresolution domain by 5/3 wavelet

The 5/3 wavelet is a Gall wavelet based on a three coefficients low-pass filter and five coefficient high-pass filter. It is an integer to integer transform like shown is the equation 1 [ADA 06]:

\[
\begin{align*}
 d[n] &= d_{0}[n] + \frac{1}{8}(d[n] + d[n - 1]) \\
 s[n] &= s_{0}[n] + \frac{1}{8}(d[n] + d[n - 1]) + \frac{1}{2}
\end{align*}
\]

(1)

This wavelet is frequently used for its conservative feature in PJE2000 compression.

1.2. Multiresolution domain by 9/7 wavelet

Unlike the 5/3 wavelet, the 9/7 wavelet is a Daubechies wavelet based on a couple of filters. The first one is low-pass filter using seven coefficients. But, the second filter is nine coefficient high-pass filter [ADA 06]:

\[
\begin{align*}
 d[n] &= d_{0}[n] + \frac{1}{16}(d[n] + d[n - 2] + s_{0}[n - 1] - 9s_{0}[n - 1] + s_{0}[n]) + \frac{1}{2} \\
 s[n] &= s_{0}[n] + \frac{1}{4}(d[n] + d[n - 1]) + \frac{1}{2}
\end{align*}
\]

(2)

Despite, its non-conservative aspect, the 9/7 wavelet is also frequently used on the compression JPEG2000 for its high compression ratio.

1.3. Watermarking in the multiresolution field with the 5/3 and 9/7 wavelet.

In figure 1, we present the principle of digital image watermarking insertion step.

![Figure 1. Insertion scheme](image)

We start by transforming the image into the insertion domain. In our case, it consists of transforming the image to the multiresolution field by the 5/3 or the 9/7 wavelet. Secondly, we select the host coefficients. Then, we insert the signature using an embedding function. Finally, we return to the spatial domain to obtain the watermarked image.

To extract the hidden mark we should transform the image to the insertion domain. Subsequently, we localize the host coefficients applying the insertion selection criteria on the host document. After that, we apply the inverse insertion function into the watermarked image elements to extract the hidden mark.

A validation test could be effected after the detection step. This test consists of comparing the extracted mark to a mark test bank having the same features, of the inserted mark. This bank includes the author referencing mark. The watermarked is called valid if the extracted mark presents the maximum similarity to the author’s mark. Otherwise, the watermarked is called invalid.

2. The concept of the family relative signatures

Classical methods refer to the author by his signature (mark). As known, we are interested in the non-blind watermarking which allows us to use the hidden mark and the original image.

Usually the extracted mark is different from the inserted one. This dissimilarity could be present without applying any distortion to the signed image. This difference is generally due to the insertion scheme. The concept of the family relative signatures profits from our watermarking technique choice. In fact, we adopt the non-blind watermarking. The principle of this approach.
consists in referring to the author by a family of relative signatures which depends on the author signature, the host image, the insertion function and the insertion domain. Adopting this concept, we name the original author signature “mother signature” or “generator signature”. The “family relative signatures” is compound of “daughter relative signatures”. This daughter signature is the extracted mark for non-attacked watermarked image. So, this signature depends on the mother signature, the host image and the insertion scheme. It is the really inserted mark. Consequently, the author is referred to by an a sample of signatures derived from its original signature. Then, the adoption of the concept of family relative signatures consists of changing the author signature reference from the original signature to the daughter relative signature [KHA 05].

3. Experimental results and discussion

3.1. Experimental condition and evaluation tools

Along this study, we will use the same signature composed of 512 real. This signature presents the author’s signature in the classical approach and the generator signature for the concept of family relative signatures.

The evaluation is performed on a 30 grayscale images database. This image database is made up by 256x256 images of different features. The insertion is carried out on the second decomposition image details of the multiresolution domain (by 5/3 or 9/7 wavelet) using the following embedding function:

\[y_i = x_i (1+ \alpha w_i) \]

\[y_i, x_i, \alpha \text{ and } w_i \text{ are respectively the marked host image coefficient, the original host image coefficient, the embedding coefficient strength and the mark element to insert inside the image.} \]

The watermarking performance evaluation is limited in our study to the imperceptibility and the robustness of the embedded mark. In fact, an unnoticeable watermarking presents a PSNR (Peak Signal Ratio) higher than 30 dB. The PSNR is expressed by the following formula:

\[\text{PSNR} = 10 \log_{10} \left(\frac{X_{\text{max}}^2}{\text{MSE}} \right) \]

Where, \(X_{\text{max}} \) presents the highest image amplitude. On the other hand, the MSE is the Mean Square Error of the compared images. The MSE formula is:

\[\text{MSE} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} (I_{ij} - \hat{I}_{ij})^2 \]

Where, \(I \) and \(I^* \) are, respectively, the original image and processed watermarked image. \(n \) and \(m \) present the image matrix size.

The PSNR allows us to quantify the distortion made by the watermark or by any eventual image attack on the signed image.

The watermarking robustness reflects the capacity to detect the inserted mark from an attacked or non attacked signed image. To quantify the watermarking robustness we use a correlation detector. Thus, we will compare the extracted mark to the referring author signature using the correlation.

\[\text{Cor}(A, B) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (A_{ij} - \overline{A})(B_{ij} - \overline{B})}{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} (A_{ij} - \overline{A})^2 \sum_{i=1}^{n} \sum_{j=1}^{m} (B_{ij} - \overline{B})^2}} \]

Accordingly, the watermarking approach is validated if the comparison of the extracted mark to the random 500 signatures database including the referencing author’s mark yields to a maximum correlation rate when we compare this last signature to the extracted one.

3.2. Results and discussions

Firstly, we start by a preliminary evaluation for the watermarking performances without applying any attack to the signed images. According to figure 1, we remark that adopting the family relative signatures concept give a correlation rate equal to 1. This result is due to the construction of the referencing mark. In fact, in this case, the referencing mark is the extracted mark from the non-attacked signed document. Consequently, we obtain the daughter signature in the watermarking extracting step. On the other hand, we remark that using the 5/3 wavelet in classical approaches ensures a better performance in terms of imperceptibility and robustness (figure 2 and 3). Figure 3 proves that classical approaches and the concept of family relative signatures ensure the same PSNR. In fact, the CFRS and the classical approach insert the same signature inside the document to watermark. Therefore, the marking imperceptibly depend only on the wavelet used in the insertion scheme. As a result, the family relative signature concept improves the watermarking robustness for the watermarking approach but it preserves the same imperceptibility. Looking to table 1, we can conclude that adopting the concept of family relative signatures in the multiresolution field based on the 5/3 wavelet ensures the best correlation rate and the least distortion of the watermarked image. Moreover, we remark that all approaches ensure a 100% rate validation because they ensure a neat detection of the author referencing signature (figure 4).
After that, we apply to the watermarked images some attacks (additive noise, Gaussian noise, cropping and compression). This operation aims at having an objective evaluation of the watermarking approaches. For each technique we illustrate the influence of the attack on the mean correlations (between referencing signature and extracted signature), the validation rate and the mean PSNR (between the original image and attacked signed image). The performance of each watermarking approach depends on the attack intensity and the referring signature. Based on figures 7, 10 and 13, we conclude, that using the 5/3 wavelet guarantees a better watermarking imperceptibility due to the conservative nature of the used wavelet.

Therefore, using the 5/3 wavelet in the classical watermarking ensures a better mean correlation rate between the author’s signature and the extracted signature when facing attacks. These attacks could be classified into tow categories. The first attack type is the global attack. This kind of attack affects the whole image like Gaussian noise, compression. The second kind of attacks is partial image attack. This type of attack concerns only some image element like additive noise and cropping.

According to the established results, we remark that, for low intensity attacks, the 5/3 wavelet ensures a better correlation rate compared to the results obtained using the 9/7 wavelet. In fact, when facing these attacks, the extracted mark is distorted by the watermarking, the image attack. So, the non-conservative feature of the 9/7 wavelet adds more distortion to the watermarked images, which explains the better validation rate of classical approach based on the 5/3 wavelet. However, the increase of the attack intensity may change these preliminary results. In fact, the increase of the image partial attack yields a better validation rate for classical watermarking approach based on the 5/3 wavelet (figures 6 and 12). But, increasing the intensity of the image global attack, the wavelet 9/7 wavelet seems to be better than the 5/3 wavelet according to their validation rate (figures 9 and 15). In spite of these different validation rates, we remark that the classical watermarking approach based on 5/3 wavelet guaranty a better mean correlation rate between the author’s signature and the extracted one (figures 5, 8, 11 and 13).

The established results demonstrate that adopting the family relative signatures concept, improves the correlation rate between the referencing mark and the extracted one (figures 5, 8, 11 and 13). These results yield to a validation rate improvement (figures 6, 9, 12 and 14). In fact, the daughter signature is more robust than the author’s signature. These results are due to the referencing signature choice. In case of the family relative signatures concept, the author is referenced by the really inserted mark (daughter mark). However, the classical approach referenced the author by his original signature which could present some distortion in the extraction watermarking step even without applying any attack on the watermarked image.

On the other hand, adopting the concept of family relative signatures, the 9/7 wavelet guarantees a better robustness performance than the 5/3 wavelet when facing any attack. So, unlike the classical watermarking approach where the robustness of the watermarking depends on the wavelet choice and the attack intensity, the concept of family relative signatures ensures better correlation rate and better validation rate when we adopt the 9/7 wavelet in the insertion scheme. However, the use of the 5/3 always ensures a better invisibility performance for the watermarking approach.

![Figure 2. Correlation Vs image number classical watermarking and the family relative signatures concept.](image2)

![Figure 3. PSNR Vs image number (bleu : watermarking based on 5/3 wavelet ; red : watermarking based on 9/7 wavelet)](image3)
(Tableau 1. Classical watermarking and the family relative signatures performances concept of the multiresolution watermarking based on 5/3 and 9/7 wavelet)

<table>
<thead>
<tr>
<th>Watermarking type</th>
<th>Wavelet</th>
<th>Mean correlation</th>
<th>Validation rate</th>
<th>Mean PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>5/3</td>
<td>0.9001</td>
<td>100%</td>
<td>51.30</td>
</tr>
<tr>
<td></td>
<td>9/7</td>
<td>0.7408</td>
<td>100%</td>
<td>40.11</td>
</tr>
<tr>
<td>RSFC</td>
<td>5/3</td>
<td>1.0000</td>
<td>100%</td>
<td>51.30</td>
</tr>
<tr>
<td></td>
<td>9/7</td>
<td>1.0000</td>
<td>100%</td>
<td>40.11</td>
</tr>
</tbody>
</table>

1 Bleu: classical watermarking using the 5/3 wavelet; Red: classical watermarking using 9/7 wavelet.

2 Green: CFRS with 5/3 wavelet; brown: CFRS + 9/7 wavelet.

Figure 4. Successful detection for image number 7: classical watermarking based on 9/7 wavelet (correlation rate = 0.2217)

Figure 5. Mean correlation Vs additive noise intensity for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet

Figure 6. Validation rate Vs additive noise intensity for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet

Figure 7. Mean PSNR additive noise intensity (bleu: watermarking based on 5/3 wavelet; red: watermarking based on 9/7 wavelet)

Figure 8. Mean correlation Vs Gaussian noise variance for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet

Figure 9. Validation rate Vs Gaussian noise variance for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet

Figure 10. Mean PSNR Vs Gaussian noise variance (bleu: watermarking based on 5/3 wavelet; red: watermarking based on 9/7 wavelet)
Figure 11. Mean correlation Vs cropping for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet.

Figure 12. Validation rate Vs cropping for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet.

Figure 13. Mean PSNR Vs cropping (blue: watermarking based on 5/3 wavelet; red: watermarking based on 9/7 wavelet).

Figure 14. Mean correlation Vs compression quality for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet.

Figure 15. Validation rate Vs compression quality for classical watermarking and CFRS watermarking in multiresolution domain by 5/3 and 9/7 wavelet.

Figure 16. Mean PSNR Vs compression quality (blue: watermarking based on 5/3 wavelet; red: watermarking based on 9/7 wavelet).

Figure 17. Examples of images from images database.
4. Conclusion

In this study, we present a new concept for digital image watermarking. This new approach concerns the extraction step of the watermarking. In fact, in this phase, we change the author’s referencing mark. Unlike the classical approach which refers to the author by the original signature author, the family relative signatures concept refers to the author by the daughter relative signature which is equal to the extracted mark from the non-attacked signed image.

For the classical watermarking, the established results prove that the use of the 5/3 wavelet ensures a better validation rate for non-attacked and low attacked signed images. The increase of the attack intensity on the partial attacked images engender a better performance for the use of the 5/3 wavelet in classical watermarking. On the other hand, to face high global attacked images the use of the 9/7 wavelet guarantees better validation rate for the classical watermarking.

Yet, the adoption of the relative signatures family yeilds an improvement of the watermarking approache performance. These improvements concern only the correlation rate and validation rate. In fact, the author is referenced by the really inserted mark inside the signed attacked or non-attacked images. Like the classical watermarking, the adoption of the family relative signatures ensures a better imperceptibility for the inserted mark when we use the 5/3 wavelet. However, the use of the 9/7 wavelet certifies for the CFRS a better correlation rate and certainly a better validation rate.

REFERENCES

