
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 27-31, 2005 – TUNISIA

Incremental Computation Of Aggregate Operators
Over Sliding Windows

Anita Dani and Janusz Getta

University Of Wollongong In Dubai,

U.A.E.
AnitaDani@uowdubai.ac.ae

University Of Wollongong,

Australia
jrg@uow.edu.au

Abstract: Sliding Window is the most popular data model in processing data streams as it captures finite and relevant
subset of an infinite stream. This paper studies different Mathematical operators used for querying and mining of data
streams. The focus of our study is on operators, operating on the whole data set. These are termed as blocking operators.
We have classified these operators according to their method of evaluation. An operator is termed as aggregate operator
if it produces the sub-set of values satisfying some given condition. The evaluation of these operators is more complex
when the query is continuous and data are changing. We present here a formal definition of incremental computation on
sliding windows. We have proposed a vector model and graph abstraction to represent the sliding window and
algorithms to evaluate Mathematical operators on the sliding window. The model is robust and can be applied to
visualize different mathematical operators on the sliding window. We have introduced a novel concept of checkpoints
in order to make the computation incremental. We present an efficient algorithm to find maximum (or minimum) on the
sliding windows using the checkpoint concept.

Key words: Algorithm, incremental, sliding windows

1 Introduction
A data stream is a continuous flow of data from the
source to the destination. Digital Signal processing,
Time series analysis in Economics and Finance,
processing data obtained from sensor networks are
some examples of data streams. In a typical data
stream, the volume of data is potentially unbounded.
Data stream applications are in many aspects different
from traditional database applications. The most
important characteristic of data stream is that the
underlying data are changing while the user
applications are static and continuously repeated. Even
though traditional databases can manage large
volumes of data set, they are unable to effectively
process the intensive sequences of updates. This is due
to the high arrival frequencies and irregular intervals
of data streams. In applications where real time
responses are of prime importance, e.g. in stock
market applications, speed of processing is a vital
issue. In applications where interpretation of data is
mostly qualitative, accuracy of answers is less
important than the processing speed.

Even though a stream is defined as an infinite

sequence of data items, the computations are always
performed on a finite subset of the stream. A concept
of a window is the most popular data structure in data
streams processing. It captures a finite subset of an
infinite stream that is relevant to the present time slot.
A timestamp associated with each tuple in a stream
allows us to broadly categorize windows as time
windows and data windows.

Finite subsets of the data stream are processed at
certain time interval. In order to achieve real-time
responses to the queries on changing data,
approximate computations are performed. A typical
approach is to store synopses (Gibbons, Matias 1998)
such as histograms, or summary results (or sketches),
such as average of values, number of distinct values or
values that satisfy certain condition. Using these
synopses, queries are evaluated with approximate
answers. Determining nature of ideal synopsis has
always been a research issue. We propose that mining
queries on data stream applications can be best
evaluated on the basis of sliding window model.

SETIT2005

Windows is the most popular data model in data
streams as it captures finite and relevant subset of
infinite stream. These windows can be large and can
change rapidly and unpredictably. It is important to
develop algorithms that can trade off between the
memory requirements and the running time at the
same time produce exact answers. Incremental
computation of aggregate operators on sliding
windows is not as simple as it is on append-only data
sets since it is required to synchronize addition and
deletion of set of tuples at the same time. We present
here a formal definition of incremental computations
on sliding windows. We can apply this definition to
any aggregate operator on sliding windows.

We have analyzed algorithms on sliding windows
for evaluation of aggregate operators. Aggregate
operators are those operators, which take all elements
from the underlying data set and produce a single
value or a list of values satis fying some given
condition. We call these algorithms as searching
algorithms. For evaluation of aggregate operators on
sliding window, not just the value, but also the
position of the result within the data set is important.
If we model the underlying data set carefully, we can
always relate the position to the time-stamp attribute.
We propose here a vector model to represent the
sliding window. The vector model has facilitated some
linear algebraic representation for mathematical
operator. We also provide some guidelines to save
intermediate results in order to make the computation
incremental. In particular, we propose an efficient
algorithm to find maximum (or minimum) on the
sliding windows.
An algorithm can be considered as incremental or
windowed if it can avoid re-processing of the elements
within the window, which have not expired from the
window. Reusability is the important criterion of
incremental algorithms. An algorithm can be partially
incremental if certain part of the computation can be
done incrementally. These algorithms can decompose
the required computation into smaller sub-tasks and
achieve optimization. An algorithm can be considered
as adaptive algorithm if it can utilize the idle time to
pre-process and store certain results for future
computation. Awareness of future computations is an
important criterion of adaptive algorithms. An
approximate algorithm can perform certain
approximation at the operator level in order to achieve
incremental computations. It is important to know
before hand, if an algorithm evaluating the given
operator is incremental or not. If it is not incremental
then it can be made to work faster by storing certain
values.
The rest of the paper is organized as follows:
Summary of related work is given in section 2. We
have highlighted our contributions in section 3.
Section 4 contains definitions and new notation. Low-
level operators and their symbolic representation are
included in Section 5. Two classes of algorithms are
introduced in Section 6. Section 7 includes formal
definition of the aggregate operator and its matrix

representation. It also includes the concept of
checkpoints. Section 8 illustrates how to model the
operator Max using the given algorithm. Conclusion
and future work is given in Section 9. Illustration of
low-level operators is given in the Appendix.

2. Related work

Comparative study of issues in databases and data
streams is presented by (Babcock et al 2003). Data
stream queries can be reasonably complex and
persistent as well transient. Resources such as memory
are limited. So the focus of research is on efficient
query processing. Researchers (Guha, Kudas 2001)
(Qiao et al, 2003) have worked on developing single
pass algorithms or incremental algorithms to evaluate
aggregate queries. A study of space requirements for
single-pass algorithms and the algorithms, which
make a few passes over the input data, is presented by
(Rauch et al 1998). Some applications require joining
of two streams or joining a stream with a table. Since
all of the stream data need not be archived, it is
necessary to develop an efficient join strategy. Das at
al (Das et al 2002)and L. Golab and M. Tamer (Golab,
Tamer 2000) have developed a new strategy to join
two data streams. Datar et al (Datar et al 2003) have
presented efficient algorithms to compute stream
statistics over sliding windows of bits. The concept of
basic windows has been presented by (Zhu, Shasha
2002). The evaluation of an aggregate using basic
window is partially incremental as the results are
refreshed only after the stream fills the basic window.
An algorithm to find MAX/MIN based on sorting of
the window elements presented by (Qiao et al 2003).
(Arasu et al 2001) have presented a class of queries
over multiple data streams, which can be computed
using bounded memory. In presence of efficient
algorithms to evaluate queries, next challenge is to
build efficient query plans. Niagara CQ (Chen et al
2002) group and (Avnur, Hellerstein 2000) have
worked on optimization of query processing.
Research groups such as STREAM (Stream 2003),
Aurora (Zdonik et al 2003), Telegraph CQ
(Krishnamurhy et al 2003) have worked on developing
DSMS in order to process streams. Comparative study
of these systems is presented by (Koudas, Srivastava
2003). A survey of recent work on data stream
management systems is presented by (Golab et al
2003). Golab, Tamer and Ozsu (Golab et al 2003)
have presented a classification of different streaming
algorithms according to the method of generating
synopses and according to the function. B.Moon et al
(Moon et al 2003) have presented a variety of
temporal aggregation algorithms. The algorithm
presented in this paper for small-scale aggregation is
based on data partitioning and parallel processing
technique. The algorithm to find min/max is similar to
merge-sort algorithm. The underlying assumption is
that the available memory is large enough to store
entire data structure, such as tree, required by each
aggregation algorithm.

SETIT2005

3. Our Contributions
We present a detail study of the algorithms on a

generic level. Our research is directed towards exact
computation for any data. We have explored different
characteristics of an algorithm, which are useful in the
context of sliding window. It is not practical to store
all data, and the data once rejected cannot be
recovered. Theoretical derivations given here can
detect the data elements, which are required for future
computation. The algorithm presented here, can
decide usefulness of the data element for future
computations, thus making the algorithm incremental.
Our optimization technique is data independent. The
optimization is not affected by the arrival order or
distribution of values. It does not require a priori
knowledge of the size of the data set.(Gibbons and
Matias 1998)

4. Definitions and Symbols

4.1 Basic terms

A data stream is an infinite sequence of tuples
where each tuple has timestamp as an additional
attribute. The tuples arrive into the stream in
sequential manner and the default access mode is
sequential only. Window is a finite sub-sequence of
data stream, which has well defined scope. Sliding
window is the mechanism of forming overlapping sub-
sequences of tuples, which are relevant to the
application, at pre-determined instances. Time Window
is the window formed on the basis of time-stamp,
where the time-stamp of each tuple lies within the
given interval of time. The number of tuples within
the window is fixed if the rate of data arrival is
constant. In general, the number of tuples within the
time-window is not fixed. Data window is the window
formed on the basis of number of tuples. If the rate of
arrival is constant, then the window will slide at
regular interval.

4.2 Modelling sliding window as a vector

Let the stream consist of a single attribute x. Each
tuple will have additional attribute timestamp t. Let
R1, R2,..Rn,.. . be the tuples from the original stream
where Ri = (xi, ti) and ti ≤ tj if i<j. We define the
sliding window at any instance as a vector X= <xt+1,
xt+2, xt+3,… xt+n> where t=0, 1, 2,..

The vector is completely described by the
following three attributes-

• Dimension of the vector (Number of elements
in the window)

• Order of the elements within the window
• Values of the elements within the window

5. Symbolic representation

5.1 Low-level operators

These are the operators that operate on vectors and
output another vector. Each of these operators will
modify one of above mentioned attributes of the input
vector. We can represent the stream operators as a
sequence of low-level operators. In this section we
introduce graph abstraction of different types of
operators. The nodes of the graph will represent
operators and arrows will indicate the flow of data and
the sequence of operator. This is based on the
abstraction presented by (Chen, Kotz 2002).

The operator Filter splits the given vector into sub-
vectors according to some given condition. The
operator Merge appends elements of the second vector
to the first vector. The operator Transform is a vector
<f1, f2,..fn> of functions, such that each fi operates on
xi. The output of this operator is another vector of
same dimension, but having different values. The
operator Accumulator operates on a single vector of
dimension n and the outputs a vector of dimension 1.
The output vector is a result of some mathematical
processing, such as addition. The operator Aggregator
operates on a vector of dimension n and outputs a sub-
vector of dimension k. The output sub-vector is the
vector of elements satisfying certain condition. The
evaluation of this Aggregator operator involves
evaluation of certain predicate for each element. The
operator Permutation operates on a vector of
dimension n and outputs another vector of same
dimension by changing the positions of the elements
within the window. Source and Write operators are
streaming operators, which are used for reading and
writing. They do not produce any output but transfer
data from the source to the destination. The operator
Write writes the input vector to working area,
intermediate storage area or permanent storage. We
make this distinction in the view of the architecture
proposed by (Babu, Widom 2001).

O p e r a t o r Symbol D o m a i n Co-domain C h a n g e d

a t t r i b u t e
Filter F ℜn

ℜk1 Xℜk2..
X ℜkm

Dimension

Merge M ℜk1 X ℜk2..
X ℜkm

ℜn Dimension

Aggregator A ℜn ℜ1 Dimension
Accumulator Ac ℜn ℜ1 Dimension
Permutation P ℜn ℜn Position
Transform T ℜn ℜn Value
Source S
Write W

Table 1. Lower-level operators on a Window Vector

SETIT2005

Any operator on a sliding window can be represented
as a sequence of low-level operators.
Example: Operator Avg can be represented as
T(Ac(T(<xt+1, xt+2, xt+3,… xt+n>)))
Operator Max can be represented as A(<xt+1, xt+2,
xt+3,… xt+n>) .

5.2 Graph abstraction

Any operator, which performs some mathematical
operation on the elements before accumulating the
values, can be modelled by Figure (1). Any aggregate
operator, which searches for a value or a set of values
satisfying the given condition, can be modelled by
Figure (2).

Elements of the window vector are written to the
temporary storage area. Whenever new elements
arrive, the window vector is refreshed. The operator is
evaluated repeatedly over the elements of the window
vector. Since the window is sliding, any two
successive window vectors have some elements
common. According to the flow of evaluation
indicated above, these common elements are re-
processed every time. At some instances only one
element may arrive and one element may leave the
window. Even though n-1 elements have not changed,
they are re-processed.

It is important to know, if the operator can get the
next result from the elements, which are moving. For
the incremental evaluation of the operator the
following steps are required:

• Undo the effect of elements, which are moving
out of the window.
• Evaluate the operator on the elements, which are
entering the window.
• Combine the results of the above two steps with
the result of the previous evaluation.

Figure 1. Processing on a Sliding Window

Figure 2. Searching on a Sliding Window 1

6. Categories of algorithms
We introduce two categories of the algorithm as

follows:
• Searching algorithm – the algorithm, which finds
or searches for a value satisfying the given condition.
Example algorithm to find max or algorithm to find
first even number within the window.

• Processing algorithm – the algorithm, which
processes all elements within the window and
produces a result through some mathematical
operations. Example Finding Lp norm or finding
weighted average of all elements within the window.

The searching algorithms may become incremental in
some cases but in general may not be incremental. The
processing algorithm can be made incremental with
proper choice of processing function. We will analyze
searching algorithms in the following section.

7. Aggregate operator

7.1 Definition

 Simple searching operation can be implemented
via a select query with appropriate where condition. If
the predicate included in the where clause contains
constants, then the evaluation of searching algorithm
is simple and non-blocking. Our aim is to study those
aggregate operators, which can be evaluated only after
processing all the elements of the window. Let
W=<x1, …xn>.

We define an aggregate operator A: ℜn→ ℜm as a
sequence of iterations:
V1 = A’(x1, V0)
V2 = A’(x2, V1)
…
Vn = A’(xn, Vn-1)
Vn is the required output which is the value of A(W).
V0 is the given vector of initial values and each of the
Vi is a vector that stores the intermediate results
computed at the i-th step. An operation A’ takes on
input an element from the window and the vector of
values obtained from previous operation. For example,

1 : Discarded ---- : Repeated operations

<xt+n+1 ,..xt+n+k>

<xt+k+1,.. xt+n+k>

<xt+1,xt+2,..xt+k>

S W

S M F

<x t+1, xt+2,..xt+n> A
V

<xt+k+1 ,..xt+n+k>

<xt+1,.. xk+k>

<xt+1, xt+2,..xt+n>

<xt+n+1 ,..xt+n+k>

S W

S M F

T Ac T

V

SETIT2005

if vector Vi contains the largest k elements in a sub-
window <x1, x2,…xi> then operation A’(xi+1, Vi) finds
the largest k elements in a sub-window <x1, x2, …, xi,
xi+1>.

7.2 Matrix representation

Let W t= nttt xxx +++ ,.., 21 be the window vector

observed at instance t. Let () ()kntnt xx ++++ ,......1 be

the tuples that enter the stream at the next instance.
We can denote this as the vector Wnew=

kntnt xx ++++ ,....1 . The sub-vector

Wold= ktt xx ++ ,....1 will indicate the tuples
removed from the window. New window Wt+1 is
represented as W t M Wold F Wnew

Observations:
• dim (Wold)= dim (Wnew) in case of data

 window only.
• Wt F Wold M Wnew= Wt M Wnew F Wold
• Wt F Wold contains elements, which are not

expired from the window.
We construct a triangular matrix ?W to represent
the contents of the window W t while it moves by
one element at each instance. The aggregate
function A operates on the diagonals of ?W. Let
Dt be the diagonal that contains the elements xt+i
for i=1,2..n. Dt+1 includes elements xt+i+1 for
i=1,2..n.
In general, Dt+k = Wt F <xt+1,…xt+k>.

Similar representation is given by (Dwilde, Alle-
Jan van der Veen 1998).

When new element arrives, it is appended as a new
column on the right and the left-most column is
removed from the matrix. Hence the matrix can be
considered as a right-open matrix.

Each diagonal represents W t F Wold

7.3 Incremental evaluation

We redefine the concept of incremental evaluation
to suit the sliding window applications as follows:

Evaluation of an algorithm is incremental over the
sliding window, if it is not re-processing the elements
from the window, which have not expired from the
window. We present here a formal model of
evaluation of any aggregate operator over sliding
window.

Let A(Wt) be the result of evaluation of aggregate
operation over the window at instance t and A(Wt+1)=
A(Wt F Wold M Wnew). The evaluation of A is
incremental if we can undo the effect of A(Wold) from

the previous result. Intuitively, this is equivalent to
computing A-1(Wold). In many cases, from the very
nature of the operator A, it is not possible to define
A-1. A(Wnew) can be evaluated before merging Wnew
with W t F Wold.

We can formulate this evaluation as follows:
Let A(Wt) = Vk.
If A(A(Wnew), A(Wt))=A(Wnew) then

A(Wt+1)=A(Wnew)
else
 If Vk ⊆ Wold then
 A-1(Wold) = A(Wt F Wold)
 A(Wt+1) = A(A-1(Wold) M A(Wnew))
 else
 A(Wt+1) = A(Wt)
 Replace W t by W t+1.
It follows from this formulation that the

incremental evaluation is not uniform but depends on
the values of the elements, which are moving.

Lemma: The evaluation of the operator A is
incremental from instance t to t+λ if A(Dt)=Vt+λ
where λ∈{1,2,..n)

7.4 Introducing checkpoints

The algorithm can be made incremental by
supporting this evaluation with some other results,
such as, finding A(Wt F Wk) in advance and using it
as A-1. Here Wk is the sub-vector <xt+1,..xt+k> where
A(Wt)=Vk.

We call A(Wt F Wk) as the checkpoint to which
the effect of A(Wold) can be rolled back. It is possible
to repeat this process by filtering out sub-vector
containing the previous result.

We introduce checkpoints for any aggregate
operator in order to achieve incremental computation.
These checkpoints will provide the successive results
when the window moves beyond the incremental
scope. The checkpoints are computed and stored at the
initial stage and updated later on as the window
moves.

For any application, where data are random, the
number of checkpoints is much smaller than the
window size.

Algorithm to find the list of checkpoints
Consider the elements Vλ1, Vλ2,…Vλp.
Observe that λ1>λ2,..>λp and
Vλ2 = A(W F <x1,..xλ1>) = A-1(x1, x2,..xλ1)
Vλ3 = A-1(xλ1,…xλ2)
..
Vλp = A-1(xλ(p-2),..xλ(p-1))
When the new elements arrive, aggregate is

evaluated over these elements in order to update the
list of checkpoints.

xλ(p+1) = A(xλ2, xn+1) , xλ(p+2) = A(xλ2, xn+1), …
Depending on the definition of the operator A and the
outcome of the evaluation, some of the checkpoints
will be cleared or the new element will be added to the
checkpoint list. The algorithm is given below:

)......(
....

....
...
.....
.......

3

2

21

I

x

x

x

x
x
xx

W

nt

nt

nt

t

t

tt

=∆

+

+

+

+

+

++

SETIT2005

8. Some aggregate operators

8.1 Aggregate Max (or Min)

Let us assume that aggregate operator indicates
finding maximum of the window elements at every
sliding movement. We can express this as
A≡Max(Wt). This operator will return the maximum
value and its highest position within the window. Let
A(W t)= xk then

V1 = Max(x1)=x1.
V2 = Max(x2, V1)
V3 = Max(x3, V2)
..
Vn=Max(xn, Vn-1)
Note that each Vk consists of a single value and

Vk = VK+1 =..=Vn
From the formal algorithm given in section 7.4, we

get A(Wt F Wold)= Max(Wt F Wold).
Let us assume that the window slides after reading

a single element every time. That is dim (Wold)= dim
(Wnew) =1. The matrix representation in (I) can reveal
the status of the window for next n instances. We use
this information to compute the results for next n
instances and make the computation incremental. The
best case is when k=n and the worst case is when k=1.
We propose here an algorithm to find maximum of the
window elements incrementally. The evaluation of
this operator is data dependent. We use this
characteristic of the algorithm to make it efficient by
probing on the positions of the key values. This avoids
unnecessary sort ing and minimizes number of
comparisons.

Max can be evaluated incrementally by keeping a
sorted list in the memory (Qiao et al 2003). Our

algorithm is sorting only the key elements and this list,
in general is much smaller than the window size. The
size of this list, in the worst case is same as the
window size, which means the entire window is
sorted. This becomes a special case and can be treated
differently. By maintaining a separate buffer, we can
process the new elements separately. Moreover, once
the checkpoints are established, the old elements are
not pre-processed even when the max element expires
from the window. This is consistent with the new
definition of incremental computation. Hence we
claim that this is computation of max over sliding
window is incremental.

8.2 Finding the longest increasing sequence

The algorithm to find and maintain the longest
increasing (or decreasing) sequence when the window
is sliding can be modeled in a similar manner. Each
Vk will be a vector of increasing values. First
checkpoint is set at the λ where xλ is the last element
of the first longest increasing sequence. The procedure
is repeated for window formed by removing first λ
elements. The last checkpoint is xn. If xn+1 < xn, then
a new sequence is formed in the buffer else, xn+1 will
be added to the last sub-sequence. As the elements
from the first longest sequence are being removed, its
length is compared with second-longest subsequence.

Algorithm to find Max over a sliding window
using checkpoints:

Initialization : nxxxW ,.., 210 =

Find checkpoints λ1, λ2,..λk such that

k
xxx λλλ >>

21

and all elements between
t

xλ and
1+t

xλ

are smaller than
1+t

xλ .

Return (xλ1) as the answer.
Repeat for each i
Let Wnew=<xn+i>
 Compare xn+i with xλ for each λ=λ1,..λk
 If (xn+i ≥ xλi) then reset xλi= xnew and clear
the smaller checkpoints.
 Else
 Add this element to a temporary buffer
 Until i<λ1
 If (i==λ1) then find maximum of the buffer
elements xn+p
 Return 2λx as the answer and add the new

check point xn+p
 Illustration : Let W0=<3,8,12,6,5,10,4,2>
Checkpoints= <12,10> max = 12
x9= 1 …add it to the buffer
x10=11 reset checkpoints, checkpoint=<12,11>

Algorithm to evaluate aggregate operator over
sliding window, using checkpoints

Let nxxxW ,.., 21=

i=1; µ=0
Repeat

kii

xxxWFW

k
WAV

k

i

k

→+→

→

+=
=

++

µ

µλ

µµ

,1

..,

)(

,21

 Until k ≤ n

pOutput λλλ ,..,: 21

Repeat for every j → 1, 2,…

k

xxxxAV

p

jnkjn pK

+=

=

+

=+ +

µλ

λλλ

1

),,...,(
1

 if k≤p remove 11 ,.. −kλλ else add jnx + to

the checkpoint list.
Remove 1λ if λx expires from the window.

SETIT2005

9. Conclusion and future Direction
Aggregate operator and its incremental

computation over sliding window are defined
formally. Using this definition, it is possible to
compute exact answers to an aggregate operator with
optimal memory utilization.

Main characteristic of an aggregate operator is to
search for an element or set of elements satisfying the
given condition. We have developed an efficient
incremental algorithm that computes some useful
results in advance. The algorithm checks for
usefulness of data for future computation and
optimizes the memory utilization by storing the
positions of the key elements along with their values.

The vector model for the window is robust and can
be extended to structures instead of single values. The
checkpoint list technique can be used for algorithms,
which require multiple passes over the data set. Since
the algorithm implements the checklist as a simple list
and the list is changed by insert and delete operations
only, there are no overhead expenses to update this
list. The new concept of incremental computation can
be generalized for complex operators formed by finite
sequence of low-level operators T, Ac and A. We will
present modeling and optimization of such operators
in future.

References
(Arasu 2001) Arasu, Babcock B.,Babu S.,
McAlister J., and Widom J. Characterizing
Memory Requirements for Queries over
Continuous Data Streams, Symposium on
Principles of Database Systems, Madison,
Wisconsin, USA, 2002.

(Avnur2000) Avnur R. and Hellerstein J.M.,
Continuous Query Optimization, Proc. ACM
SIGMOD, 2000.

(Babu 2001) Babu S. and Widom J., Continuous
Queries Over Data Streams, ACM SIGMOD
Record , 2001.

(Babcock 2003) Babcock B.,Babu S., Datar
M.,Motwani R. and Widom J., Models and
Issues in Data Stream System, Proc.21st
ACM-SIGMOD-SIGACT-SIGART, 2002.
(Chen 2001) Chen G. and Kotz D., Context
Aggregation and Dissemination in Ubiquitous
Computing Systems, 4th IEEE Workshop on
Mobile Computing Systems and Applications,
Callicoon, New York, 2002.

(Chen 2002) Chen J., DeWitt D., Tian F. and
Wang Y., Niagara CQ:A Scalable Continuous
Query System For Internet Databases, Proc. ACM
SIGMOD, Conference, Dallas, Texas, USA, 2000.

(Cranor 2003) Cranor C., Johnson T.,

Spatscheck O., and Shkapenyuk V., The
Gigascope Stream Database , Bulletin of the
Technical Committee on Data Engineering, IEEE
Computer Society, March 2003.

(Das 2002) Das A., Gehrke J., and Riedewald M.,
Approximate Join Processing Over Data Streams,
Proc. ACM SIGMOD Conference on Management
of Data, San Diago, California, USA, 2003.

(Datar 2003) Datar M., Gionis A., Indyk P. and
Motwani R., Maintaining Stream Statistics Over
Sliding Windows, Proc. of 13th ACM-SIAM
symposium on Discrete Algorithms, 2002.

(Dewilde 1998) Dewilde P. and Alle -Jan van der
Veen, Time-Varying Systems and Computations,
Kluwar Publications 1998.

(Dobra 2003) Dobra A., Garofalakis M., Gehrke
J.,Rastogi R., Processing Complex Aggregate
Queries Over Data Stream, ACM SIGMOD
Madison, USA, 2002.

(Gibbons 1998) Gibbons P. and Matias Y.
Synopsis Data Structures For Massive Data Sets,
DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science: Special Issue on
External Memory Algorithms and
Visualization,1998.

(Golab 2000) Golab L. and Tamer M., Sliding
Window Multi-way Joins Over Data Streams,
Proc. Of 29th VLDB Conference, Berlin,
Germany 2003.

(Golab 2003) Golab L., Tamer M. and Ozsu, Data
Stream Management Issues - A Survey Technical
Report CS-2003-08 Available at
http://db.uwaterloo.ca/~ddbms/publications/strea
m/streamsurvey.pdf

(Greenwald 2001) Greenwald M and Khanna S.,
Computation of Quantile Summaries, ACM
SIGMOD , CA, USA, 2001.

(Guha 2001) Guha S. and Koudas N.,
Approximating a Data Stream for querying and
Estimation: Algorithms and Performance
Evaluation, Annual ACM Symposium on Theory of
Computing, Hersonissos, Greece, 2001.

(Koudas 2001) Koudas N. and Srivastava D.,
Data Stream Query Processing, Proc. Of 29th
VLDB Conference, Berlin, Germany 2003.
(Krishnmurthy 2003) Krishnmurhty S.,
Chandrasekaran S., Cooper O., Deshpande A.,
Franklin M., Hellerstein J.M., Hong W., Madden
S., Reiss F. and Shah M., Telegraph CQ : An
Architectural Status Report, IEEE Data
Engineering Bulletin 26,1 March 2003.

SETIT2005

(Moon 2003) Moon B., Lopex I.F.V. and
Immanuel V., Efficient Algorithms for Large
Scale Temporal Aggregation, IEEE Transactions
On Knowledge and Data Engineering VOL .15
NO. 3 MAY/JUNE 2003.

(Motwani 2003) Motwani R., Widom J., Arasu
A.,Babcock B.,Babu S., Datar M., Manku G.,
Olston C.,Rosenstein J. and Varma R., Query
Processing Resource Management and
Approximation in a Data Stream, Proc.
Conference on Innovative Data Systems Research,
Asilmor, CA, USA, 2003.

(Qiao 2003) Qiao L. Chen S., Li H.G.,
Agarwal D. and Abbadi E.E., Efficient
Computation for Max/Min queries in Sliding
Windows, Unpublished Manuscript.

(Rauch 1998) Rauch M., Henzinger, Raghavan P.
and Rajgopalan S., Computing On Data Streams
available at
http://hpl.hp.com/rechreports/Compaq-DEC/SRC-
TN-1998-011.html

(Stream 2003) Stream Group, STREAM The
Stanford Stream Data Manager, IEEE Data
Engineering Bulletin 26, March 2003.

(Zdonik 2003) Zdonik S., Stonebreaker M.,
Cherniack M., Cetintemel U., Balazinska M. and
Balakrishan H., The Aurora And Medusa Projects,
Bulletin of the Technical Committee on Data
Engineering, IEEE Computer Society, March
2003.

(Zhu, 2002) Zhu Y. and Shasha D., Stat Stream :
Statistical Monitoring of Thousands of Data
Streams in Real Time, Proceedings of 28th
VLDB 2002.

Appendix:
Graphical representation of low-level operators on

data stream

P(xki) is true for all ki’s for given predicate P

A-(v)
<xk1,..xkm> <x1,x2,…xn>

A

<x2,x3,x4>

F <x1,x2,x3,x4>
<x1>

A-(i)

M

<x1,x2>

<x3,x4> <x1,x2,x3,x4>
A-(ii)

<V> <x1,x2,…xn>
Ac

V= ⊕ xi where ⊕ is some
mathematical operator

A-(iii)

<f1(x1) ,…fn(xn)><x1,x2,…xn>
T

fi : ℜ → ℜ and fi ≠ fj

A-(iv)

 xi' = xj for some i and j

<x1’,..xn’> <x1,x2,…xn>
P A-(vi)

