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Abstract: Sliding Window is the most popular data model in processing data streams as it captures finite and relevant 
subset of an infinite stream. This paper studies different Mathematical operators used for querying and mining of data 
streams. The focus of our study is on operators, operating on the whole data set. These are termed as blocking operators. 
We have classified these operators according to their method of evaluation. An operator is termed as aggregate operator 
if it produces the sub-set of values satisfying some given condition.  The evaluation of these operators is more complex 
when the query is continuous and data are changing. We present here a formal definition of incremental computation on 
sliding windows. We have proposed a vector model and graph abstraction to represent the sliding window and 
algorithms to evaluate Mathematical operators on the sliding window. The model is robust and can be applied to 
visualize different mathematical operators on the sliding window. We have introduced a novel concept of checkpoints 
in order to make the computation incremental. We present an efficient algorithm to find maximum (or minimum) on the 
sliding windows using the checkpoint concept.  
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1 Introduction 
A data stream is a continuous flow of data from the 
source to the destination. Digital Signal processing, 
Time series analysis in Economics and Finance, 
processing data obtained from sensor networks are 
some examples of data streams. In a typical data 
stream, the volume of data is potentially unbounded. 
Data stream applications are in many aspects different 
from traditional database applications. The most 
important characteristic of data stream is that the 
underlying data are changing while the user 
applications are static and continuously repeated. Even 
though traditional databases can manage large 
volumes of data set, they are unable to effectively 
process the intensive sequences of updates. This is due 
to the high arrival frequencies and irregular intervals 
of data streams. In applications where real time 
responses are of prime importance, e.g. in stock 
market applications, speed of processing is a vital 
issue. In applications where interpretation of data is 
mostly qualitative, accuracy of answers is less 
important than the processing speed.  

 
Even though a stream is defined as an infinite 

sequence of data items, the computations are always 
performed on a finite subset of the stream. A concept 
of a window is the most popular data structure in data 
streams processing. It captures a finite subset of an 
infinite stream that is relevant to the present time slot. 
A timestamp associated with each tuple in a stream 
allows us to broadly categorize windows as time 
windows and data windows. 

Finite subsets of the data stream are processed at 
certain time interval. In order to achieve real-time 
responses to the queries on changing data, 
approximate computations are performed. A typical 
approach is to store synopses (Gibbons, Matias 1998) 
such as histograms, or summary results (or sketches), 
such as average of values, number of distinct values or 
values that satisfy certain condition. Using these 
synopses, queries are evaluated with approximate 
answers. Determining nature of ideal synopsis has 
always been a research issue. We propose that mining 
queries on data stream applications can be best 
evaluated on the basis of sliding window model. 
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Windows is the most popular data model in data 
streams as it captures finite and relevant subset of 
infinite stream. These windows can be large and can 
change rapidly and unpredictably. It is important to 
develop algorithms that can trade off between the 
memory requirements and the running time at the 
same time produce exact answers. Incremental 
computation of aggregate operators on sliding 
windows is not as simple as it is on append-only data 
sets since it is required to synchronize addition and 
deletion of set of tuples at the same time. We present 
here a formal definition of incremental computations 
on sliding windows. We can apply this definition to 
any aggregate operator on sliding windows.  

We have analyzed algorithms on sliding windows 
for evaluation of aggregate operators. Aggregate 
operators are those operators, which take all elements 
from the underlying data set and produce a single 
value or a list of values satis fying some given 
condition. We call these algorithms as searching 
algorithms. For evaluation of aggregate operators on 
sliding window, not just the value, but also the 
position of the result within the data set is important. 
If we model the underlying data set carefully, we can 
always relate the position to the time-stamp attribute. 
We propose here a vector model to represent the 
sliding window. The vector model has facilitated some 
linear algebraic representation for mathematical 
operator. We also provide some guidelines to save 
intermediate results in order to make the computation 
incremental. In particular, we propose an efficient 
algorithm to find maximum (or minimum) on the 
sliding windows.  
An algorithm can be considered as incremental or 
windowed if it can avoid re-processing of the elements 
within the window, which have not expired from the 
window. Reusability is the important criterion of 
incremental algorithms. An algorithm can be partially 
incremental if certain part of the computation can be 
done incrementally. These algorithms can decompose 
the required computation into smaller sub-tasks and 
achieve optimization. An algorithm can be considered 
as adaptive algorithm if it can utilize the idle time to 
pre-process and store certain results for future 
computation. Awareness of future computations is an 
important criterion of adaptive algorithms. An 
approximate algorithm can perform certain 
approximation at the operator level in order to achieve 
incremental computations.  It is important to know 
before hand, if an algorithm evaluating the given 
operator is incremental or not. If it is not incremental 
then it can be made to work faster by storing certain 
values.  
The rest of the paper is organized as follows: 
Summary of related work is given in section 2. We 
have highlighted our contributions in section 3. 
Section 4 contains definitions and new notation. Low-
level operators and their symbolic representation are 
included in Section 5.  Two classes of algorithms are 
introduced in Section 6. Section 7 includes formal 
definition of the aggregate operator and its matrix 

representation. It also includes the concept of 
checkpoints. Section 8 illustrates how to model the 
operator Max using the given algorithm. Conclusion 
and future work is given in Section 9. Illustration of 
low-level operators is given in the Appendix.  

2. Related work  

Comparative study of issues in databases and data 
streams is presented by (Babcock et al 2003). Data 
stream queries can be reasonably complex and 
persistent as well transient. Resources such as memory 
are limited. So the focus of research is on efficient 
query processing. Researchers (Guha, Kudas 2001) 
(Qiao et al, 2003) have worked on developing single 
pass algorithms or incremental algorithms to evaluate 
aggregate queries. A study of space requirements for 
single-pass algorithms and the algorithms, which 
make a few passes over the input data, is presented by 
(Rauch et al 1998). Some applications require joining 
of two streams or joining a stream with a table. Since 
all of the stream data need not be archived, it is 
necessary to develop an efficient join strategy. Das at 
al (Das et al 2002)and L. Golab and M. Tamer (Golab, 
Tamer 2000) have developed a new strategy to join 
two data streams. Datar et al (Datar et al 2003) have 
presented efficient algorithms to compute stream 
statistics over sliding windows of bits. The concept of 
basic windows has been presented by (Zhu, Shasha 
2002). The evaluation of an aggregate using basic 
window is partially incremental as the results are 
refreshed only after the stream fills the basic window. 
An algorithm to find MAX/MIN based on sorting of 
the window elements presented by (Qiao et al 2003). 
(Arasu et al 2001) have presented a class of queries 
over multiple data streams, which can be computed 
using bounded memory. In presence of efficient 
algorithms to evaluate queries, next challenge is to 
build efficient query plans. Niagara CQ (Chen et al 
2002) group and (Avnur, Hellerstein 2000) have 
worked on optimization of query processing.   
Research groups such as STREAM (Stream 2003), 
Aurora (Zdonik et al 2003), Telegraph CQ 
(Krishnamurhy et al 2003) have worked on developing 
DSMS in order to process streams. Comparative study 
of these systems is presented by (Koudas, Srivastava 
2003). A survey of recent work on data stream 
management systems is presented by (Golab et al 
2003). Golab, Tamer and Ozsu (Golab et al 2003) 
have presented a classification of different streaming 
algorithms according to the method of generating 
synopses and according to the function. B.Moon et al 
(Moon et al 2003) have presented a variety of 
temporal aggregation algorithms. The algorithm 
presented in this paper for small-scale aggregation is 
based on data partitioning and parallel processing 
technique. The algorithm to find min/max is  similar to 
merge-sort algorithm. The underlying assumption is 
that the available memory is large enough to store 
entire data structure, such as tree, required by each 
aggregation algorithm.  
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3. Our Contributions  
We present a detail study of the algorithms on a 

generic level. Our research is directed towards exact 
computation for any data. We have explored different 
characteristics of an algorithm, which are useful in the 
context of sliding window. It is not practical to store 
all data, and the data once rejected cannot be 
recovered. Theoretical derivations given here can 
detect the data elements, which are required for future 
computation. The algorithm presented here, can 
decide usefulness of the data element for future 
computations, thus making the algorithm incremental. 
Our optimization technique is data independent. The 
optimization is not affected by the arrival order or 
distribution of values. It does not require a priori 
knowledge of the size of the data set.(Gibbons and 
Matias 1998) 

4. Definitions and Symbols 

4.1 Basic terms  

A data stream is an infinite sequence of tuples 
where each tuple has timestamp as an additional 
attribute. The tuples arrive into the stream in 
sequential manner and the default access mode is 
sequential only. Window is a finite sub-sequence of 
data stream, which has well defined scope. Sliding 
window is the mechanism of forming overlapping sub-
sequences of tuples, which are relevant to the 
application, at pre-determined instances. Time Window 
is the window formed on the basis of time-stamp, 
where the time-stamp of each tuple lies within the 
given interval of time. The number of tuples within 
the window is fixed if the rate of data arrival is 
constant. In general, the number of tuples within the 
time-window is not fixed. Data window is the window 
formed on the basis of number of tuples. If the rate of 
arrival is constant, then the window will slide at 
regular interval.  

4.2 Modelling sliding window as a vector  

Let the stream consist of a single attribute x. Each 
tuple will have additional attribute timestamp t. Let 
R1,  R2,..Rn,.. . be the tuples from the original stream 
where Ri = (xi, ti) and ti ≤ tj if i<j. We define the 
sliding window at any instance as a vector X= <xt+1, 
xt+2, xt+3,… xt+n> where t=0, 1, 2,.. 

The vector is completely described by the 
following three attributes- 

• Dimension of the vector (Number of elements 
in the window) 

• Order of the elements within the window 
• Values of the elements within the window 

5. Symbolic representation 

5.1 Low-level operators  

These are the operators that operate on vectors and 
output another vector. Each of these operators will 
modify one of above mentioned attributes of the input 
vector. We can represent the stream operators as a 
sequence of low-level operators. In this section we 
introduce graph abstraction of different types of 
operators. The nodes of the graph will represent 
operators and arrows will indicate the flow of data and 
the sequence of operator. This is based on the 
abstraction presented by (Chen, Kotz 2002).  

The operator Filter splits the given vector into sub-
vectors according to some given condition. The 
operator Merge appends elements of the second vector 
to the first vector. The operator Transform is a vector 
<f1, f2,..fn> of functions, such that each fi operates on 
xi. The output of this operator is another vector of 
same dimension, but having different values. The 
operator Accumulator operates on a single vector of 
dimension n and the outputs a vector of dimension 1. 
The output vector is a result of some mathematical 
processing, such as addition. The operator Aggregator 
operates on a vector of dimension n and outputs a sub-
vector of dimension k. The output sub-vector is the 
vector of elements satisfying certain condition. The 
evaluation of this Aggregator operator involves 
evaluation of certain predicate for each element. The 
operator Permutation operates on a vector of 
dimension n and outputs another vector of same 
dimension by changing the positions of the elements 
within the window. Source and Write operators are 
streaming operators, which are used for reading and 
writing. They do not produce any output but transfer 
data from the source to the destination.  The operator 
Write writes the input vector to working area, 
intermediate storage area or permanent storage. We 
make this distinction in the view of the architecture 
proposed by (Babu, Widom 2001).  

  
O p e r a t o r Symbol D o m a i n Co-domain C h a n g e d

a t t r i b u t e  
Filter F ℜn 

ℜk1 Xℜk2.. 
X ℜkm 

Dimension  

Merge  M ℜk1 X  ℜk2.. 
X ℜkm 

ℜn Dimension   

Aggregator A ℜn ℜ1 Dimension  
Accumulator Ac ℜn ℜ1 Dimension 
Permutation P ℜn ℜn Position 
Transform T ℜn ℜn Value  
Source   S    
Write     W    

Table 1. Lower-level operators on a Window Vector 
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Any operator on a sliding window can be represented 
as a sequence of low-level operators.  
Example: Operator Avg can be represented as 
T(Ac(T(<xt+1, xt+2, xt+3,… xt+n>))) 
Operator Max can be represented as A(<xt+1,  xt+2, 
xt+3,… xt+n>) . 

5.2 Graph abstraction 

Any operator, which performs some mathematical 
operation on the elements before accumulating the 
values, can be modelled by Figure (1). Any aggregate 
operator, which searches for a value or a set of values 
satisfying the given condition, can be modelled by 
Figure (2). 

Elements of the window vector are written to the 
temporary storage area. Whenever new elements 
arrive, the window vector is refreshed. The operator is 
evaluated repeatedly over the elements of the window 
vector. Since the window is sliding, any two 
successive window vectors have some elements 
common. According to the flow of evaluation 
indicated above, these common elements are re-
processed every time. At some instances only one 
element may arrive and one element may leave the 
window. Even though n-1 elements have not changed, 
they are re-processed.  

It is important to know, if the operator can get the 
next result from the elements, which are moving. For 
the incremental evaluation of the operator the 
following steps are required: 

• Undo the effect of elements, which are moving 
out of the window.  
• Evaluate the operator on the elements, which are 
entering the window. 
• Combine the results of the above two steps with 
the result of the previous evaluation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Processing on a Sliding Window  
 

 

 

 

 

 
 
 
 
Figure 2. Searching on a Sliding Window 1 

6. Categories of algorithms 
We introduce two categories of the algorithm as 

follows: 
• Searching algorithm – the algorithm, which finds 
or searches for a value satisfying the given condition. 
Example algorithm to find max or algorithm to find 
first even number within the window.  

• Processing algorithm – the algorithm, which 
processes all elements within the window and 
produces a result through some mathematical 
operations. Example Finding Lp norm or finding 
weighted average of all elements within the window. 

The searching algorithms may become incremental in 
some cases but in general may not be incremental. The 
processing algorithm can be made incremental with 
proper choice of processing function. We will analyze 
searching algorithms in the following section. 

7. Aggregate operator 

7.1 Definition  

 Simple searching operation can be implemented 
via a select query with appropriate where condition. If 
the predicate included in the where clause contains 
constants, then the evaluation of searching algorithm 
is simple and non-blocking. Our aim is to study those 
aggregate operators, which can be evaluated only after 
processing all the elements of the window. Let 
W=<x1, …xn>. 

We define an aggregate operator A: ℜn→ ℜm as a 
sequence of iterations: 
V1 = A’(x1, V0) 
V2 = A’(x2, V1) 
… 
Vn = A’(xn, Vn-1) 
Vn is the required output which is the value of A(W). 
V0 is the given vector of initial values and each of the 
Vi is a vector that stores the intermediate results 
computed at the i-th step. An operation A’ takes on 
input an element from the window and the vector of 
values obtained from previous operation. For example, 

                                                 
1              : Discarded  ---- : Repeated operations 

<xt+n+1 ,..xt+n+k> 

<xt+k+1,.. xt+n+k> 

<xt+1,xt+2,..xt+k> 

S W 

S M F 

<x t+1, xt+2,..xt+n> A 
V 

<xt+k+1 ,..xt+n+k> 

<xt+1,..    xk+k> 

<xt+1, xt+2,..xt+n> 

<xt+n+1 ,..xt+n+k> 

S W 

S M F 

T Ac T 

V 
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if vector Vi contains the largest k elements in a sub-
window <x1, x2,…xi> then operation A’(xi+1, Vi) finds 
the largest k elements in a sub-window <x1, x2, …, xi, 
xi+1>.  

7.2 Matrix representation 

Let W t= nttt xxx +++ ,.., 21  be the window vector 

observed at instance t. Let  ( ) ( )kntnt xx ++++ ,......1   be 

the tuples that enter the stream at the next instance. 
We can denote this as the vector Wnew= 

kntnt xx ++++ ,....1 . The sub-vector 

Wold= ktt xx ++ ,....1  will indicate the tuples 
removed from the window. New window Wt+1 is 
represented as  W t M Wold F Wnew 

Observations:  
• dim (Wold)= dim (Wnew) in case of data   

        window only. 
•  Wt F Wold M Wnew= Wt M Wnew F Wold   
• Wt F Wold contains elements, which are not 

expired from the window.  
We construct a triangular matrix ?W to represent 
the contents of the window W t while it moves by 
one element at each instance. The aggregate 
function A operates on the diagonals of  ?W. Let 
Dt be the diagonal that contains the elements xt+i 
for i=1,2..n. Dt+1 includes elements  xt+i+1  for 
i=1,2..n.  
In general, Dt+k = Wt F <xt+1,…xt+k>. 

  
Similar representation is given by (Dwilde, Alle-
Jan van der Veen 1998). 

When new element arrives, it is appended as a new 
column on the right and the left-most column is 
removed from the matrix.  Hence the matrix can be 
considered as a right-open matrix.   

 
Each diagonal represents W t F Wold   

7.3 Incremental evaluation  

We redefine the concept of incremental evaluation 
to suit the sliding window applications as follows:  

Evaluation of an algorithm is incremental over the 
sliding window, if it is not re-processing the elements 
from the window, which have not expired from the 
window. We present here a formal model of 
evaluation of any aggregate operator over sliding 
window.  

Let A(Wt) be the result of evaluation of aggregate 
operation over the window at instance t and A(Wt+1)= 
A(Wt F Wold M Wnew). The evaluation of A is 
incremental if we can undo the effect of A(Wold) from 

the previous result. Intuitively, this is equivalent to 
computing A-1(Wold). In many cases, from the very 
nature of the operator A, it is not possible to define   
A-1. A(Wnew) can be evaluated before merging Wnew 
with W t F Wold.  

We can formulate this evaluation as follows: 
Let A(Wt) = Vk. 
If A(A(Wnew), A(Wt))=A(Wnew) then 

A(Wt+1)=A(Wnew) 
else  
     If Vk ⊆ Wold then  
          A-1(Wold) = A(Wt F Wold)  
          A(Wt+1) = A(A-1(Wold) M A(Wnew)) 
      else 
          A(Wt+1) = A(Wt)  
    Replace W t by W t+1.  
It follows from this formulation that the 

incremental evaluation is not uniform but depends on 
the values of the elements, which are moving.   

Lemma: The evaluation of the operator A is 
incremental from instance t to t+λ  if A(Dt)=Vt+λ 
where λ∈{1,2,..n) 

7.4 Introducing checkpoints 

The algorithm can be made incremental by 
supporting this evaluation with some other results, 
such as, finding A(Wt F Wk) in advance and using it 
as A-1. Here Wk is the sub-vector <xt+1,..xt+k> where 
A(Wt)=Vk.  

We call A(Wt F Wk) as the checkpoint to which 
the effect of A(Wold) can be rolled back. It is possible 
to repeat this process by filtering out sub-vector 
containing the previous result.  

We introduce checkpoints for any aggregate 
operator in order to achieve incremental computation. 
These checkpoints will provide the successive results 
when the window moves beyond the incremental 
scope. The checkpoints are computed and stored at the 
initial stage and updated later on as the window 
moves.  

For any application, where data are random, the 
number of checkpoints is much smaller than the 
window size.  

Algorithm to find the list of checkpoints 
Consider the elements Vλ1, Vλ2,…Vλp.   
Observe that λ1>λ2,..>λp and  
Vλ2 = A(W F <x1,..xλ1>) = A-1(x1, x2,..xλ1) 
Vλ3 = A-1(xλ1,…xλ2) 
.. 
Vλp = A-1(xλ(p-2),..xλ(p-1)) 
When the new elements arrive, aggregate is 

evaluated over these elements in order to update the 
list of checkpoints.  

xλ(p+1) = A(xλ2, xn+1) , xλ(p+2) = A(xλ2,  xn+1), … 
Depending on the definition of the operator A and the 
outcome of the  evaluation, some of the checkpoints 
will be cleared or the new element will be added to the 
checkpoint list. The algorithm is given below: 
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8. Some aggregate operators  

8.1 Aggregate Max (or Min) 

Let us assume that aggregate operator indicates 
finding maximum of the window elements at every 
sliding movement. We can express this as 
A≡Max(Wt). This operator will return the maximum 
value and its highest position within the window.  Let 
A(W t)= xk then  

V1 = Max(x1)=x1. 
V2 = Max(x2, V1) 
V3 = Max(x3, V2) 
.. 
Vn=Max(xn, Vn-1) 
Note that each Vk consists of a single value and 

Vk = VK+1  =..=Vn   
From the formal algorithm given in section 7.4, we 

get   A(Wt F Wold)= Max(Wt F Wold).  
Let us assume that the window slides after reading 

a single element every time. That is dim (Wold)= dim 
(Wnew) =1. The matrix representation in (I) can reveal 
the status of the window for next n instances. We use 
this information to compute the results for next n 
instances and make the computation incremental. The 
best case is when k=n and the worst case is when k=1.  
We propose here an algorithm to find maximum of the 
window elements incrementally. The evaluation of 
this operator is data dependent. We use this 
characteristic of the algorithm to make it efficient by 
probing on the positions of the key values. This avoids 
unnecessary sort ing and minimizes number of 
comparisons. 

Max can be evaluated incrementally by keeping a 
sorted list in the memory (Qiao et al 2003). Our 

algorithm is sorting only the key elements and this list, 
in general is much smaller than the window size. The 
size of this list, in the worst case is same as the 
window size, which means the entire window is 
sorted. This becomes a special case and can be treated 
differently. By maintaining a separate buffer, we can 
process the new elements separately. Moreover, once 
the checkpoints are established, the old elements are 
not pre-processed even when the max element expires 
from the window. This is consistent with the new 
definition of incremental computation. Hence we 
claim that this is computation of max over sliding 
window is incremental.  

 
8.2 Finding the longest increasing sequence 

The algorithm to find and maintain the longest 
increasing (or decreasing) sequence when the window 
is sliding can be modeled in a similar manner. Each 
Vk will be a vector of increasing values. First 
checkpoint is set at the λ where xλ is the last element 
of the first longest increasing sequence. The procedure 
is repeated for window formed by removing first λ 
elements. The last checkpoint is xn. If xn+1 < xn, then 
a new sequence is formed in the buffer else, xn+1 will 
be added to the last sub-sequence. As the elements 
from the first longest sequence are being removed, its 
length is compared with second-longest subsequence.  

Algorithm to find Max over a sliding window 
using checkpoints:  
 

Initialization : nxxxW ,.., 210 =  

 
Find checkpoints λ1, λ2,..λk such that  
   

k
xxx λλλ >> .....

21
   

and all elements between 
t

xλ  and 
1+t

xλ  

are smaller than 
1+t

xλ . 

Return (xλ1) as the answer. 
Repeat for each i    
Let Wnew=<xn+i> 
        Compare xn+i with xλ for each λ=λ1,..λk 
          If (xn+i ≥ xλi) then reset xλi= xnew and clear 
the smaller checkpoints.  
         Else  
            Add this element to a temporary buffer 
 Until i<λ1   
 If (i==λ1) then find maximum of the buffer 
elements   xn+p 
  Return 2λx as the answer and add the new 

check point   xn+p  
 Illustration : Let W0=<3,8,12,6,5,10,4,2>  
Checkpoints= <12,10> max = 12 
x9= 1  …add it to the buffer 
x10=11    reset checkpoints, checkpoint=<12,11> 

Algorithm to evaluate aggregate operator over 
sliding window, using checkpoints  

Let nxxxW ,.., 21=  

i=1; µ=0 
Repeat  

      

kii

xxxWFW

k
WAV

k

i

k

→+→

→

+=
=

++

µ

µλ

µµ

,1

..,

)(

,21

 

 Until k ≤ n 

pOutput λλλ ,..,: 21  

Repeat for every j → 1, 2,… 

    
k

xxxxAV

p

jnkjn pK

+=

=

+

=+ +

µλ

λλλ

1

),,...,(
1

  

     if  k≤p  remove 11 ,.. −kλλ     else add jnx + to 

the checkpoint list.  
Remove 1λ  if λx expires from the window. 
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9. Conclusion and future Direction 
Aggregate operator and its incremental 

computation over sliding window are defined 
formally. Using this definition, it is possible to 
compute exact answers to an aggregate operator with 
optimal memory utilization.   

Main characteristic of an aggregate operator is to 
search for an element or set of elements satisfying the 
given condition. We have developed an efficient 
incremental algorithm that computes some useful 
results in advance. The algorithm checks for 
usefulness of data for future computation and 
optimizes the memory utilization by storing the 
positions of the key elements along with their values.  

The vector model for the window is robust and can 
be extended to structures instead of single values. The 
checkpoint list technique can be used for algorithms, 
which require multiple passes over the data set. Since 
the algorithm implements the checklist as a simple list 
and the list is changed by insert and delete operations 
only, there are no overhead expenses to update this 
list. The new concept of incremental computation can 
be generalized for complex operators formed by finite 
sequence of low-level operators T, Ac and A. We will 
present modeling and optimization of such operators 
in future.  
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Appendix: 
Graphical representation of low-level operators on 

data stream 

 
 

P(xki) is true for all ki’s for given predicate P 

A-(v) 
<xk1,..xkm> <x1,x2,…xn> 

A 

<x2,x3,x4> 

F <x1,x2,x3,x4> 
<x1> 

A-(i) 

M 

<x1,x2> 

<x3,x4> <x1,x2,x3,x4> 
A-(ii) 

<V> <x1,x2,…xn> 
Ac 

V= ⊕ xi where ⊕ is some 
mathematical operator  

A-(iii) 

<f1(x1) ,…fn(xn)><x1,x2,…xn> 
T 

fi : ℜ → ℜ and fi ≠ fj

A-(iv) 

  xi' = xj for some i and j 

<x1’,..xn’> <x1,x2,…xn> 
P A-(vi) 


