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Abstract: At all times people have wished to have the possibility to communicate in secrecy so as to allow nobody to 
overhear their messages. A new AES-like cipher, key-dependent Advanced Encryption Standard algorithm, KAES is 
proposed, to vanish any suspicion of a trapdoor being built into the cipher and to expand the key-space to strength it 
against known attacks. The cipher structure resembles the AES approved by National Institute for Standardization and 
Technology, NIST, providing the necessary confusion and diffusion. 
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1. Introduction 
In October 2000, after a four year effort to 

replace the aging DES, NIST announced the selection 
of Rijndael as the proposed AES (NIST 2004). Draft 
of the Federal Information Processing Standard (FIPS) 
for the AES was published in February 2001, 
Standardization of AES was approved after public 
review and comments, and published a final standard 
FIPS PUB-197 in December 2001. Standardization 
was effective in May 2002 (NIST 2004). 

Rijndael submitted by Joan Daemen and Vincent 
Rijmen (Daemen 1998), is a symmetric key, iterated 
block cipher based on the arithmetic in the Galois 
Field of 2^8 elements – GF(2^8). The block size and 
the key size can be independently specified to 128, 
192 or 256 bits (all nine combinations are possible). A 
data to be processed by Rijndael is partitioned into a 
rectangular array of bytes, called a state, The key is 
similarly pictured as a rectangular array with 4 rows 
and Nk columns. Where Nk is equal to the key size 
divided by 32. Rijndaels round function operates on a 
state Nr times, where Nr is equal to the number of 
rounds that can be 10, 12 or 14 rounds, depending on 
Nb and Nk, where Nb is equal to the block size divided 
by 32. Fig.1. depicts a state, with 4 rows and 4 
columns. 
 
Rijndael round is composed of 4 transformations: 

1. ByteSub (Sbox substitution) provides non-
linearity and confusion. 

2. Shiftrow (rotations) provides inter-column 
diffusion. 

3. MixColumn (linear combination) provides 
inter-Byte diffusion. 

4. AddRoundKey (round key bytes XOR into 
each byte of the state), provides confusion. 

 
 
 
 
 
 
 
 
 

Fig.1. State 4x4. 
 
Their operations are byte-oriented. Decryption is 
applying the operations in a reverse order with respect 
to the order of encryption. For more details refer to 
(Daemen 1998). 
 
This paper introduces a new, key-dependent Advanced 
Encryption standard algorithm, KAES, to ensure that 
no trapdoor is present in the cipher and to expand the 
key-space to slow down attacks. 
The paper is organized as follows: Section 2, presents 
the proposed KAES. Section 3 explains the evaluation 
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criteria. Section 4 discusses the experimental results. 
Section 5 summaries and concludes the paper. 
References are given in Section 6. 

2. KAES 
KAES is block cipher in which the block length 

and the key length are specified according to AES 
specification: three key length alternatives 128, 192, 
or 256 bits and block length of 128 bits. We assume a 
key length of 128 bits, which is likely to be the one 
most commonly implemented. Fig.2 shows the overall 
structure of KAES.  

 
Fig.2. KAES Encryption and Decryption. 
 
The input to the encryption and decryption 

algorithms is a single 128-bit block, this block is 
depicted as a square matrix of bytes. This block is 
copied into the state array as shown in Fig.1, which is 
modified at each stage of encryption or decryption. 
After the final stage, state is copied to an output 
matrix. Similarly, 128-bit key is depicted as a square 
matrix of bytes. This key is then expanded into an 
array of key schedule words: each word is four bytes 
and the total key schedule is 44 words for the 128-bit 
key, a round key similar to a state is depicted in Fig.3. 

The round function resembles that of AES, it is 
also composed of 4 stages namely: Byte substitution, 
Shift State, shift Nibble and Add round key. The 
encryption and decryption process resembles that of 
AES with the same number of rounds, data and key 
size. We describe the forward (encryption) algorithm, 
the inverse (decryption) algorithm and the rationale 
for each stage. This is followed by a description of key 

expansion and generation of shift offset-matrix. 
 
 
 
 
 
 
 
 

Fig.3. Round Key. 

2.1 Substitute Bytes Transformation 
Uses key dependent S-Box to perform a byte-by-

byte substitution of the state. The forward substitute 
byte transformation, called SubBytes, is a simple 
lookup table. KAES defines a 16x16 matrix of byte 
values, called an S-Box, that contains a permutation of 
all possible 256 8-bit values (elements of GF(2^8) 
finite field) with the key used for construction. Each 
individual byte of the state is mapped into a new byte 
in the following way: The leftmost 4-bits of the byte 
(higher nibble) are used as a column value and the 
rightmost 4-bits (lower nibble) are used as a row 
value. These row and column values serve as indexes 
into S-Box to select a unique 8-bit output value. 
 
The S-Box is constructed in the following fashion: 

1- Initialize the S-Box with the Byte values in 
ascending sequence column by column. The 
first column contains 0x00, 0x01,……,0x0F; 
the second column contains 0x10, 0x11,… 
etc; and so on. Thus, the value of the Byte at 
column x and row y is [xy]. 

 
2- For each byte value of the key, ki (for 0 =< i 

<= key length), for example, if the key length 
is 16 Byte, the first byte k1, then k2 and so on. 
Examine the value of ki, if (ki  mod 2) equals 
zero, run a pseudorandom generator for the 
value of ki; otherwise run another, also for 
the value of ki. Two linear congruence 
pseudorandom generators are used, called 
rand1 and rand2, that makes use of the linear 
congruence parameters (Michael 2001) for 
ISO-C Standard and GNU-C respectively. 

 
3- The last run value of the selected 

pseudorandom generator, r, is added to the 
mean of the key, to introduce a loop counter 
value for the swapping loop 

 
]1)([ ++= rkeymeanrloopcounte        (1) 

 
4- Again, use rand1 and rand2 to generate two 

byte values that serve as an indexes into S-
Box to select two bytes to be swapped 
together. This operation continues until the 
loop counter ends. 

 
5- Repeat steps 2, 3, and 5 until all the key byte 

values ki (for 0 =< i <= key length) has been 
taken. 
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The inverse substitute byte transformation, called 
InvSubBytes, makes use of the inverse S-Box The 
inverse S-Box is constructed by determining a 
substitution pair and replacing it with it’s inverse. 
 

The S-Box is designed that has a low correlation 
between input bits and output bits The S-Box has a 
property that there is no “fixed points”  

 
[S-Box(a) = a]              (2) 

 
and no “opposite fixed points” 
 

[S-Box(a) = a ]              (3) 
 
where a  is bit-wise complement of a. It is 

invertible, that is  
 

Inv-S-Box [S-Box(a)] = a             (4) 
 
However the S-Box is not self inverse, in the 

sense that it is not true that  
 

S-Box(a) = Inv-S-Box(a)             (5) 

2.2. Shift State Transformation 
Permute the state either column-wise or row-wise 

interchangeable dependent on round key values. The 
forward shift state transformation, called ShiftState, is 
composed of two transformations:  

ShiftRow transformation, that performs circular 
left shift on individual rows of the state, according to 
offset1. 

ShiftColumn transformation, that performs 
circular up shift on individual columns of the state, 
according to offset2. 

offset1 and offset2 are selected from an 
offset_matrix; a linear array that contains 
combinations of different offset values. The selection 
depends on the round key byte values r1 and r2 
respectively, in the following way: the round key ri 
(for i =1,2) is looked up the S-Box, the column index 
for ri serve as an index into the offset_matrix and the 
corresponding value is copied into offseti. The order in 
which shift row or shift column are executed depends 
on the round key byte value r0, that is if (r0 mod 2) 
equals to zero the order is shift row followed by shift 
column, otherwise shift column followed by shift row. 

The inverse shift state transformation, called 
InvShiftState, performs the shift row and shift column 
in opposite direction right and down respectively. Also 
their order are reversed, i.e. if (r0 mod 2) equals to 
zero the order becomes shift column followed by shift 
row, instead of shift row followed shift column as in 
ShiftState. Shift row (a part of shift state) moves an 
individual Byte from one column to another, which is 
a linear distance of a multiple of 4 Bytes, and shift 
column (the other part of shift state) moves an 
individual Byte across a column (from one row to 
another), which is a linear displacement within a row 

2.3. Shift Nibble Transformation 
Shifts the higher nibbles or lower nibbles of the 

state columns dependent on round key values. The 
forward nibble shift transformation, called ShiftNibble, 
operates on each column individually. Each Byte is 
composed of two nibbles, higher nibble (leftmost 4-
bits of a Byte) and lower nibble (right most 4-bits of a 
Byte). Each byte of a column is mapped into a new 
value that is a function of the next Byte in the column. 
The transformation can be defined by the following 
operation on a state. For each column, Cj (where, 0 =< 
j <= number of columns). Either higher nibbles or 
lower nibbles are circular shifted up one position 
dependent on the value of the Round key. i.e. if (r3,j 
mod 2), i.e. elements of the 3rd row of round key, 
equals to zero then lower nibbles of column, Cj are 
shifted up one position, otherwise higher nibbles of 
column, Cj are shifted up one position. The inverse 
shift nibble transformation, called InvShiftNibble, 
performs circular down shift by one position, i.e. in 
opposite direction of the forward transformation. The 
ShiftNibble transformation combined with the 
ShiftState transformation ensures that after a few 
rounds, all output bits depend on all input bits. 

2.4. Add Round Key Transformation 

A simple bit-wise XOR operation on a state with a 
portion of the expanded key, round key. i.e. 128-bits of 
a state are bit-wise XORed with 128-bits of a round 
key. The add round key transformation, is called 
AddRoundKey,  

The operation is viewed as a column wise operation 
between the 4-Bytes of a state column and one word 
of the round key; it can also be viewed as a Byte-level 
operation. The inverse AddRoundKey transformation 
is identical to the forward AddRoundKey 
transformation, because the XOR operation is it’s own 
inverse. 

'stateRoundkeystate =⊕               (6) 

stateRoundkeystate =⊕'              (7) 
 

The Add Round Key transformation is a simple as 
possible and effects every bit of a state. The 
complexity of the round key expansion, plus the 
complexity of the other stages of KAES, ensure 
security. 

2.5. KAES Key Expansion 
The KAES key expansion algorithm, takes as an 

input a four word (16 Bytes) key, produces a linear 
array of forty four words (176 Bytes) keys. This is 
sufficient to provide a four word round key for the 
initial AddRoundKey stage and each of the 10 rounds 
of cipher. The following pseudo code describes the 
expansion. 

The key is utilized to construct a Key_Box, 
similar to S_Box. Four bytes from the Key_Box is 
copied into a word, w to fill the first word of the 
expanded key. for a word whose position in the w 
array a multiple of 4, a new Key_Box is constructed 
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using previous 4 words of the array w to construct a 
key that is exploited in the construction of the 
Key_Box. The remainder of the expanded key is filled 
in a similar way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.6. Shift Offset Matrix Generation 
The shift offset matrix algorithm, takes as an 

input a 16-Byte key and produces a linear array of 16 
words called offset_matrix. Which is sufficient to 
provide offsets for both Shift Row and Shift Column 
of the ShiftState transformation. The length of the 
offset_matrix, 16, symbolizes the number of columns 
of S_Box, since column index serve as an index into 
the offset_matrix. 
The offset_matrix is constructed in the following 
fashion: 
 

1. The mean of the key is employed to reset the 
pseudorandom generator to it’s Jth  state, i.e. 
start generation from position J that is equal 
to the value of the mean of the key. The 
pseudorandom generator provides numbers 
that are uniformly distributed in the interval 
[0,1]. To match the offset shifts, the 
generated numbers are multiplied by 4 and 
rounded to the nearest integer to form the 
word offset [0 1 2 3], where 0 implies no 
shift, 1 implies a shift by one position and so 
on. The direction of the shift depends on 
whether it’s ShiftState or InvShiftState. 

 
2. The word offset [0 1 2 3] is pseudorandom 

permuted and copied in offset_matrix. The 
operation continues until 16 words have been 
generated and filled into the offset_matrix. 

 
3. The offset_matrix is circularly down shifted 

by the number of columns of the state. 

2.7. KAES vs. AES 
The main differences between AES and KAES can 

be summarized in Table.1. Where the key and round 
key are applied in each stage, transformation as 
depicted in Fig.2. 

 
 

Table.1. Differences between KAES and AES 
 AES KAES 

Block 
Length 

128-bit same 

Key Length 128-bit,192-bit 
and 256-bit 

Same 

Number of 
Rounds  

For key length 
128-bit. 
10 Rounds 

Same 

Round 
Function 

# Composed of 4 
transformations, 
namely: 

  -ByteSub 
-Shift Row 
-Mix Column 
-AddRoundKey. 
 

# For last round 
Mix Column is 
eliminated 

# Composed of 4 
transformations, 
namely: 
  -ByteSub 
-Shift State 
-Shift Nibble 
- AddRoundKey. 
 

# Same for all 
rounds 
 

S-BOX fixed key dependent 
Key 
Expansion 

Utilize the fixed 
S-Box 

Generate a new 
Key-Box 

Round 
Transforma
tion 

Independent on 
the key, except 
for Add Round 
Key. 

All 
transformations 
utilize the key. 

Shift Offset Fixed [0 1 2 3] Reliant on the 
key  

3. Evaluation Criteria  
Various tests can be applied to sequences of bytes 

for evaluating pseudorandom number generators for 
encryption and compression algorithms (ENT 2004). 
To facilitate interpretation of the experimental results, 
a brief description is given, to make the analysis of the 
tests’ output understandable 

 
(a) Entropy 
The information density expressed as a 
number of bits per byte. Extremely dense 
information indicate that information is 
essentially random. Hence optimal 
compression is unlikely to reduce it’s size. 
 
(b) Optimal “Best” Compression 
Reflects compressibility and is computed 
based on entropy encoding. 
 
(c) Chi-square Distribution 
The chi-square ( 2χ ) distribution is 
calculated for a stream of bytes, expressed as 
a percentage. The percentage can be 
interpreted as the degree to which a sequence 
under investigation is suspect of being 
“NON-RANDOM”. If the percentage is 
greater than 99% or less than 1%, the 
sequence is almost certainly “NOT-
RANDOM”. If the percentage is between 
99% and 95% or between 1% and 5%, the 
sequence is “SUSPECT”. Percentages 

KeyExpansion (Byte key[16] , Word w[44]) 
{ Byte Key_Box = [16,16] , k[4]; 
 
 for (r = 0; r < 44; r++) 
 { 
    if (r mod 4 = 0)   Key_Box = gen_S_Box(key); 
    for(i=0;i<4;i++) 
      for(j=0;j<4;j++) 
          k[j] = Key_Box[(r mod 16,4*i+j)]; 
      w[4*r+i] = (k[0], k[1], k[2], k[3]); 
      if (r mod 4 = 0) 
        key = (w[4*r],w[4*r+1],w[4*r+2],w[4*r+3]); 
 } 
} 
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between 90% and 95% or between 5% and 
10% indicate that the sequence is “ALMOST 
SUSPECT” . Otherwise, the sequence is 
random. 
 
(d) Arithmetic Mean Value 
Calculate the mean of a sequence. If a 
sequence, close to random, it’s mean should 
be about 127.5. If the mean departs from this 
value, the values are consistently high or low. 
 
(e) Monte Carlo value for π 
Each successive sequence of six bytes is used 
as 24-bit x and y coordinates within a square. 
If the distance of a randomly generated point 
is less than the radius of a circle inscribed 
within the square, the six byte sequence is 
considered a “hit”. The percentage of hits can 
be used to calculate the value of π. If the 
computed value approaches the correct value 
of π, the sequence is close to random. 
 
(f) Serial Correlation Coefficient 
The quantity measures the extent to which 
each byte in a sequence depends upon the 
previous byte. If the value (which can be 
positive or negative) close to zero, the 
sequence is random (totally uncorrelated). 
Otherwise serial correlation coefficient will 
be greater than or equal 0.5. 

4. Experimental Results 
To simulate KAES, a MATLAB (Mathworks 

2004) script was implemented for both AES and 
KAES. The key was fixed for both algorithms. A 
number of files were encrypted and decrypted, 
including images and audio. For evaluation a program, 
named “ENT” (ENT 2004) for testing pseudo number 
sequences was used in comparison between KAES 
and AES as shown in Tables.2-3. To measure the 
performance of KAES, NIST statistical test suite for 
testing randomness (NIST 2001), completeness principle, 
Avalanche effect (Webster 1985) was implemented in 
MATLAB (Mathworks 2004). 

 
Table 2 shows a comparison between AES and 

KAES for encrypting a text file of size 3228 Bytes. It 
can be observed that, the Arithmetic mean value of 
KAES reaches 127.5, thus the data is close to random. 
In addition to the information is more dense indicating 
that the information is essentially random. 

 
Table.3. illustrates the comparison of encrypting 

an audio file of size 11,532 Bytes. 2χ distribution 
shows that both sequences are random. The main 
feature is that KAES processing time is much more 
faster than AES. 

 
For an image of size 56296 Bytes, that contains a 

wildly predictable repeated data. Table.4. shows that 
the calculated 2χ distribution for both algorithms is 
almost certainly not random, and the optimum 

compression indicates that compressibility may be 
achieved. Again the main feature is processing time. 

 
Table.2.Comparison Between AES & KAES for a text 
file 

 
Table3.Comparison Between AES & KAES for an 
audio file  

 
Table4.Comparison Between AES & KAES for an 
image 

 
Several tests have been conducted to observe the 
performance of KAES. Below experimental results 

Measure Plaintext AES KAES 
Entropy 

(bits/byte) 
4.7854 7.9362 7.9443 

Optimum 
compression 

40% 0% 0% 

2χ distribution 0.01% 25% 50% 
Arithmetic 
mean value  

87.996 123.78 128.87 

Monte Carlo 
value for Pi 

(3.1417) 

4.0 3.2416 3.0631 

Serial 
correlation 
coefficient  

0.1808 0.0024 -0.0023 

Processing 
time  

 20.75s 20.29s 

Measure Plaintext AES KAES 
Entropy (Bits 

/byte) 
4.4218 7.9840 7.9820 

Optimum 
compression 

44% 0% 0% 

2χ distribution 0.01% 50% 11% 
Arithmetic 
mean value 

126.200 128.69 126.07 

Monte Carlo 
value for Pi 

3.99 3.1175 3.2008 

Serial 
correlation 
coefficient 

-0.0820 0.0038 0.0043 

Processing 
time 

 74.438s 23.547s 

 Plaintext AES KAES 
Entropy (Bits / 

byte) 
3.67435 7.2802 7.1697 

Optimum 
compression 

54% 8% 10% 

2χ distribution 0.01% 0.01% 0.01% 
Arithmetic 
mean value 

182.397 126.66 127.28 

Monte Carlo 
value for Pi 

(3.1416) 

0.5687 3.1346 3.3158 

Serial 
correlation 
coefficient 

0.6128 -0.075 0.0217 

Processing time  362.73s 39.48s 
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achieved for a plaintext of 16 bytes all zeros, and only 
one bit complemented at a time, a sample of the 
plaintext and its corresponding ciphertext is shown in 
Table.5. 
 
Table.5. Plaintext & Ciphertext sample 

Plaintext: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 

Ciphertext: 50 94 43 9C F4 BE 6E F4 9C 67 1E E4 
54 33 4B 95 

Plaintext: 80 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 

Ciphertext: F9 BA D3 C6 E6 C4 A8 1A 8E 4A AA 
7D A0 B5 F0 9E 

Plaintext: 01 00 00 00 00 00 00 00 00 00 00 00 00 00  
00 00 

Ciphertext: 10 18 0C 6E A3 4A EE 28 BA 7B 25 1C 
2F A6 68 0C 

 
Fig.4. shows the Pearson’s correlation coefficient 

of plaintext and its corresponding ciphertext, that 
provides a measure of how the two affect one another, 
i.e. how much one of them depends on the other. 

Fig.4.Correlation Coefficient. 
 

It could be noticed that, the correlation coefficient 
values indicate a degree of linear dependence between 
the plaintext bits and the ciphertext bits as shown in 
Fig.4. 
 

To measure confusion and diffusion, we applied 
avalanche effect and completeness principle on the 
same plaintext and it’s ciphertext stated above. It can 
be observed that complementing one bit of the 
plaintext results in an average change of the ciphertext 
bits as depicted in Fig.5. Also the number of 
avalanche vectors that had more than one half of its 
bits changed was 73 and is more than one half  128-bit 
pairs. 
 

Fig.6. plots the P-value of the frequency test of 
both the plaintext and cipher, almost the P-value of the 
ciphertext is more than 0.01, we conclude that the 
sequence is random  

 
 

Fig.5.Number of ciphertext bits changed when 
complementing one bit of plaintext 

 

Fig.6.Frequency Test 
 
 

The P-value for frequency test within a block of size 
12-bits indicates that the sequence of the ciphertext is 
random as illustrated in Fig.7. 

Fig.7.Frequency Test within a Block 
 

Runs test focus on the total number of runs in the 
sequence, where a run is an uninterrupted sequence of 
identical bits, i.e. determine the oscillation between 
zeros and ones is too fast or too slow, as shown in 
Fig.8. Where P-value of ciphertext exceeds the 
threshold value 0.01, and thus the sequence is random. 
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Fig.8.Runs Test 
 
 
The longest run of ones in a block of size 16 bit 
determine whether the length of the longest run of 
ones within the tested sequence is consistent with the 
length of the longest run of ones that would be 
expected in a random sequence. Fig.9. depicts the P-
value which is greater than 0.01, thus we can conclude 
that the sequence is random. 

 

Conclusion 
KAES doesn’t contradict the security of the AES 

algorithm. We tried to keep all the mathematical 
criteria for AES without change. We improved the 
security of AES by employing the key to be the main 
parameter of the algorithm. 
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Fig.9.Longest Run of Ones within a Block 
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