
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 27-31, 2005 – TUNISIA

A Proposal For A Key-Dependent AES
A. Fahmy*, M. Shaarawy**, K. El-Hadad***, G. Salama*** and K. Hassanain****

* Faculty of computers and Information, Cairo University, Egypt

** Faculty of computers and Information, Helwan University, Egypt
shaarawy194@yahoo.com

*** Egyptian Armed Forces, Egypt

****Technical Research Department, Egypt
khass@idsc.net.eg

Abstract: At all times people have wished to have the possibility to communicate in secrecy so as to allow nobody to
overhear their messages. A new AES-like cipher, key-dependent Advanced Encryption Standard algorithm, KAES is
proposed, to vanish any suspicion of a trapdoor being built into the cipher and to expand the key-space to strength it
against known attacks. The cipher structure resembles the AES approved by National Institute for Standardization and
Technology, NIST, providing the necessary confusion and diffusion.
Key words AES, Confusion, Diffusion, Key dependent S-Box

1. Introduction
In October 2000, after a four year effort to

replace the aging DES, NIST announced the selection
of Rijndael as the proposed AES (NIST 2004). Draft
of the Federal Information Processing Standard (FIPS)
for the AES was published in February 2001,
Standardization of AES was approved after public
review and comments, and published a final standard
FIPS PUB-197 in December 2001. Standardization
was effective in May 2002 (NIST 2004).

Rijndael submitted by Joan Daemen and Vincent
Rijmen (Daemen 1998), is a symmetric key, iterated
block cipher based on the arithmetic in the Galois
Field of 2^8 elements – GF(2^8). The block size and
the key size can be independently specified to 128,
192 or 256 bits (all nine combinations are possible). A
data to be processed by Rijndael is partitioned into a
rectangular array of bytes, called a state, The key is
similarly pictured as a rectangular array with 4 rows
and Nk columns. Where Nk is equal to the key size
divided by 32. Rijndaels round function operates on a
state Nr times, where Nr is equal to the number of
rounds that can be 10, 12 or 14 rounds, depending on
Nb and Nk, where Nb is equal to the block size divided
by 32. Fig.1. depicts a state, with 4 rows and 4
columns.

Rijndael round is composed of 4 transformations:

1. ByteSub (Sbox substitution) provides non-
linearity and confusion.

2. Shiftrow (rotations) provides inter-column
diffusion.

3. MixColumn (linear combination) provides
inter-Byte diffusion.

4. AddRoundKey (round key bytes XOR into
each byte of the state), provides confusion.

Fig.1. State 4x4.

Their operations are byte-oriented. Decryption is
applying the operations in a reverse order with respect
to the order of encryption. For more details refer to
(Daemen 1998).

This paper introduces a new, key-dependent Advanced
Encryption standard algorithm, KAES, to ensure that
no trapdoor is present in the cipher and to expand the
key-space to slow down attacks.
The paper is organized as follows: Section 2, presents
the proposed KAES. Section 3 explains the evaluation

S0,0

S1,3S1,2S1,1S1,0

S0,3S0,2S0,1

S2,0

S3,3S3,2S3,1S3,0

S2,3S2,2S2,1

SETIT2005

criteria. Section 4 discusses the experimental results.
Section 5 summaries and concludes the paper.
References are given in Section 6.

2. KAES
KAES is block cipher in which the block length

and the key length are specified according to AES
specification: three key length alternatives 128, 192,
or 256 bits and block length of 128 bits. We assume a
key length of 128 bits, which is likely to be the one
most commonly implemented. Fig.2 shows the overall
structure of KAES.

Fig.2. KAES Encryption and Decryption.

The input to the encryption and decryption

algorithms is a single 128-bit block, this block is
depicted as a square matrix of bytes. This block is
copied into the state array as shown in Fig.1, which is
modified at each stage of encryption or decryption.
After the final stage, state is copied to an output
matrix. Similarly, 128-bit key is depicted as a square
matrix of bytes. This key is then expanded into an
array of key schedule words: each word is four bytes
and the total key schedule is 44 words for the 128-bit
key, a round key similar to a state is depicted in Fig.3.

The round function resembles that of AES, it is
also composed of 4 stages namely: Byte substitution,
Shift State, shift Nibble and Add round key. The
encryption and decryption process resembles that of
AES with the same number of rounds, data and key
size. We describe the forward (encryption) algorithm,
the inverse (decryption) algorithm and the rationale
for each stage. This is followed by a description of key

expansion and generation of shift offset-matrix.

Fig.3. Round Key.

2.1 Substitute Bytes Transformation
Uses key dependent S-Box to perform a byte-by-

byte substitution of the state. The forward substitute
byte transformation, called SubBytes, is a simple
lookup table. KAES defines a 16x16 matrix of byte
values, called an S-Box, that contains a permutation of
all possible 256 8-bit values (elements of GF(2^8)
finite field) with the key used for construction. Each
individual byte of the state is mapped into a new byte
in the following way: The leftmost 4-bits of the byte
(higher nibble) are used as a column value and the
rightmost 4-bits (lower nibble) are used as a row
value. These row and column values serve as indexes
into S-Box to select a unique 8-bit output value.

The S-Box is constructed in the following fashion:

1- Initialize the S-Box with the Byte values in
ascending sequence column by column. The
first column contains 0x00, 0x01,……,0x0F;
the second column contains 0x10, 0x11,…
etc; and so on. Thus, the value of the Byte at
column x and row y is [xy].

2- For each byte value of the key, ki (for 0 =< i

<= key length), for example, if the key length
is 16 Byte, the first byte k1, then k2 and so on.
Examine the value of ki, if (ki mod 2) equals
zero, run a pseudorandom generator for the
value of ki; otherwise run another, also for
the value of ki. Two linear congruence
pseudorandom generators are used, called
rand1 and rand2, that makes use of the linear
congruence parameters (Michael 2001) for
ISO-C Standard and GNU-C respectively.

3- The last run value of the selected

pseudorandom generator, r, is added to the
mean of the key, to introduce a loop counter
value for the swapping loop

]1)([++= rkeymeanrloopcounte (1)

4- Again, use rand1 and rand2 to generate two

byte values that serve as an indexes into S-
Box to select two bytes to be swapped
together. This operation continues until the
loop counter ends.

5- Repeat steps 2, 3, and 5 until all the key byte

values ki (for 0 =< i <= key length) has been
taken.

Inv.S-BoxS-Box

Ciphertext

Expand Key

AddRoundKey

AddRoundKey

ShiftNibble

ShiftState

ByteSub

R
O

U
N

D
 1

RoundKey [4,7]

AddRoundKey

ShiftNibble

ShiftState

ByteSub

R
O

U
N

D
 1

0

G
en

er
at

e
S

-B
ox

RoundKey [0,3]

RoundKey [40,43]

AddRoundKey

AddRoundKey

Inv. ShiftNibble

Inv. ShiftState

ByteSub

AddRoundKey

Inv. ShiftNibble

Inv. ShiftState

ByteSub

R
O

U
N

D
 1

0

G
en

er
at

e
S

-B
ox

R
O

U
N

D
 1

Ciphertext

Plaintext
Reconstructed

Plaintext

Key

(a) Encryption (b) Decryption

r0 r12r8r4

r14

r15r7

r10r2

r11r3

r6

r1 r13r9r5

SETIT2005

The inverse substitute byte transformation, called
InvSubBytes, makes use of the inverse S-Box The
inverse S-Box is constructed by determining a
substitution pair and replacing it with it’s inverse.

The S-Box is designed that has a low correlation
between input bits and output bits The S-Box has a
property that there is no “fixed points”

[S-Box(a) = a] (2)

and no “opposite fixed points”

[S-Box(a) = a] (3)

where a is bit-wise complement of a. It is

invertible, that is

Inv-S-Box [S-Box(a)] = a (4)

However the S-Box is not self inverse, in the

sense that it is not true that

S-Box(a) = Inv-S-Box(a) (5)

2.2. Shift State Transformation
Permute the state either column-wise or row-wise

interchangeable dependent on round key values. The
forward shift state transformation, called ShiftState, is
composed of two transformations:

ShiftRow transformation, that performs circular
left shift on individual rows of the state, according to
offset1.

ShiftColumn transformation, that performs
circular up shift on individual columns of the state,
according to offset2.

offset1 and offset2 are selected from an
offset_matrix; a linear array that contains
combinations of different offset values. The selection
depends on the round key byte values r1 and r2
respectively, in the following way: the round key ri
(for i =1,2) is looked up the S-Box, the column index
for ri serve as an index into the offset_matrix and the
corresponding value is copied into offseti. The order in
which shift row or shift column are executed depends
on the round key byte value r0, that is if (r0 mod 2)
equals to zero the order is shift row followed by shift
column, otherwise shift column followed by shift row.

The inverse shift state transformation, called
InvShiftState, performs the shift row and shift column
in opposite direction right and down respectively. Also
their order are reversed, i.e. if (r0 mod 2) equals to
zero the order becomes shift column followed by shift
row, instead of shift row followed shift column as in
ShiftState. Shift row (a part of shift state) moves an
individual Byte from one column to another, which is
a linear distance of a multiple of 4 Bytes, and shift
column (the other part of shift state) moves an
individual Byte across a column (from one row to
another), which is a linear displacement within a row

2.3. Shift Nibble Transformation
Shifts the higher nibbles or lower nibbles of the

state columns dependent on round key values. The
forward nibble shift transformation, called ShiftNibble,
operates on each column individually. Each Byte is
composed of two nibbles, higher nibble (leftmost 4-
bits of a Byte) and lower nibble (right most 4-bits of a
Byte). Each byte of a column is mapped into a new
value that is a function of the next Byte in the column.
The transformation can be defined by the following
operation on a state. For each column, Cj (where, 0 =<
j <= number of columns). Either higher nibbles or
lower nibbles are circular shifted up one position
dependent on the value of the Round key. i.e. if (r3,j
mod 2), i.e. elements of the 3rd row of round key,
equals to zero then lower nibbles of column, Cj are
shifted up one position, otherwise higher nibbles of
column, Cj are shifted up one position. The inverse
shift nibble transformation, called InvShiftNibble,
performs circular down shift by one position, i.e. in
opposite direction of the forward transformation. The
ShiftNibble transformation combined with the
ShiftState transformation ensures that after a few
rounds, all output bits depend on all input bits.

2.4. Add Round Key Transformation

A simple bit-wise XOR operation on a state with a
portion of the expanded key, round key. i.e. 128-bits of
a state are bit-wise XORed with 128-bits of a round
key. The add round key transformation, is called
AddRoundKey,

The operation is viewed as a column wise operation
between the 4-Bytes of a state column and one word
of the round key; it can also be viewed as a Byte-level
operation. The inverse AddRoundKey transformation
is identical to the forward AddRoundKey
transformation, because the XOR operation is it’s own
inverse.

'stateRoundkeystate =⊕ (6)

stateRoundkeystate =⊕' (7)

The Add Round Key transformation is a simple as
possible and effects every bit of a state. The
complexity of the round key expansion, plus the
complexity of the other stages of KAES, ensure
security.

2.5. KAES Key Expansion
The KAES key expansion algorithm, takes as an

input a four word (16 Bytes) key, produces a linear
array of forty four words (176 Bytes) keys. This is
sufficient to provide a four word round key for the
initial AddRoundKey stage and each of the 10 rounds
of cipher. The following pseudo code describes the
expansion.

The key is utilized to construct a Key_Box,
similar to S_Box. Four bytes from the Key_Box is
copied into a word, w to fill the first word of the
expanded key. for a word whose position in the w
array a multiple of 4, a new Key_Box is constructed

SETIT2005

using previous 4 words of the array w to construct a
key that is exploited in the construction of the
Key_Box. The remainder of the expanded key is filled
in a similar way.

2.6. Shift Offset Matrix Generation
The shift offset matrix algorithm, takes as an

input a 16-Byte key and produces a linear array of 16
words called offset_matrix. Which is sufficient to
provide offsets for both Shift Row and Shift Column
of the ShiftState transformation. The length of the
offset_matrix, 16, symbolizes the number of columns
of S_Box, since column index serve as an index into
the offset_matrix.
The offset_matrix is constructed in the following
fashion:

1. The mean of the key is employed to reset the
pseudorandom generator to it’s Jth state, i.e.
start generation from position J that is equal
to the value of the mean of the key. The
pseudorandom generator provides numbers
that are uniformly distributed in the interval
[0,1]. To match the offset shifts, the
generated numbers are multiplied by 4 and
rounded to the nearest integer to form the
word offset [0 1 2 3], where 0 implies no
shift, 1 implies a shift by one position and so
on. The direction of the shift depends on
whether it’s ShiftState or InvShiftState.

2. The word offset [0 1 2 3] is pseudorandom

permuted and copied in offset_matrix. The
operation continues until 16 words have been
generated and filled into the offset_matrix.

3. The offset_matrix is circularly down shifted

by the number of columns of the state.

2.7. KAES vs. AES
The main differences between AES and KAES can

be summarized in Table.1. Where the key and round
key are applied in each stage, transformation as
depicted in Fig.2.

Table.1. Differences between KAES and AES
 AES KAES

Block
Length

128-bit same

Key Length 128-bit,192-bit
and 256-bit

Same

Number of
Rounds

For key length
128-bit.
10 Rounds

Same

Round
Function

Composed of 4
transformations,
namely:

 -ByteSub
-Shift Row
-Mix Column
-AddRoundKey.

For last round
Mix Column is
eliminated

Composed of 4
transformations,
namely:
 -ByteSub
-Shift State
-Shift Nibble
- AddRoundKey.

Same for all
rounds

S-BOX fixed key dependent
Key
Expansion

Utilize the fixed
S-Box

Generate a new
Key-Box

Round
Transforma
tion

Independent on
the key, except
for Add Round
Key.

All
transformations
utilize the key.

Shift Offset Fixed [0 1 2 3] Reliant on the
key

3. Evaluation Criteria
Various tests can be applied to sequences of bytes

for evaluating pseudorandom number generators for
encryption and compression algorithms (ENT 2004).
To facilitate interpretation of the experimental results,
a brief description is given, to make the analysis of the
tests’ output understandable

(a) Entropy
The information density expressed as a
number of bits per byte. Extremely dense
information indicate that information is
essentially random. Hence optimal
compression is unlikely to reduce it’s size.

(b) Optimal “Best” Compression
Reflects compressibility and is computed
based on entropy encoding.

(c) Chi-square Distribution
The chi-square (2χ) distribution is
calculated for a stream of bytes, expressed as
a percentage. The percentage can be
interpreted as the degree to which a sequence
under investigation is suspect of being
“NON-RANDOM”. If the percentage is
greater than 99% or less than 1%, the
sequence is almost certainly “NOT-
RANDOM”. If the percentage is between
99% and 95% or between 1% and 5%, the
sequence is “SUSPECT”. Percentages

KeyExpansion (Byte key[16] , Word w[44])
{ Byte Key_Box = [16,16] , k[4];

 for (r = 0; r < 44; r++)
 {
 if (r mod 4 = 0) Key_Box = gen_S_Box(key);
 for(i=0;i<4;i++)
 for(j=0;j<4;j++)
 k[j] = Key_Box[(r mod 16,4*i+j)];
 w[4*r+i] = (k[0], k[1], k[2], k[3]);
 if (r mod 4 = 0)
 key = (w[4*r],w[4*r+1],w[4*r+2],w[4*r+3]);
 }
}

SETIT2005

between 90% and 95% or between 5% and
10% indicate that the sequence is “ALMOST
SUSPECT” . Otherwise, the sequence is
random.

(d) Arithmetic Mean Value
Calculate the mean of a sequence. If a
sequence, close to random, it’s mean should
be about 127.5. If the mean departs from this
value, the values are consistently high or low.

(e) Monte Carlo value for π
Each successive sequence of six bytes is used
as 24-bit x and y coordinates within a square.
If the distance of a randomly generated point
is less than the radius of a circle inscribed
within the square, the six byte sequence is
considered a “hit”. The percentage of hits can
be used to calculate the value of π. If the
computed value approaches the correct value
of π, the sequence is close to random.

(f) Serial Correlation Coefficient
The quantity measures the extent to which
each byte in a sequence depends upon the
previous byte. If the value (which can be
positive or negative) close to zero, the
sequence is random (totally uncorrelated).
Otherwise serial correlation coefficient will
be greater than or equal 0.5.

4. Experimental Results
To simulate KAES, a MATLAB (Mathworks

2004) script was implemented for both AES and
KAES. The key was fixed for both algorithms. A
number of files were encrypted and decrypted,
including images and audio. For evaluation a program,
named “ENT” (ENT 2004) for testing pseudo number
sequences was used in comparison between KAES
and AES as shown in Tables.2-3. To measure the
performance of KAES, NIST statistical test suite for
testing randomness (NIST 2001), completeness principle,
Avalanche effect (Webster 1985) was implemented in
MATLAB (Mathworks 2004).

Table 2 shows a comparison between AES and

KAES for encrypting a text file of size 3228 Bytes. It
can be observed that, the Arithmetic mean value of
KAES reaches 127.5, thus the data is close to random.
In addition to the information is more dense indicating
that the information is essentially random.

Table.3. illustrates the comparison of encrypting

an audio file of size 11,532 Bytes. 2χ distribution
shows that both sequences are random. The main
feature is that KAES processing time is much more
faster than AES.

For an image of size 56296 Bytes, that contains a

wildly predictable repeated data. Table.4. shows that
the calculated 2χ distribution for both algorithms is
almost certainly not random, and the optimum

compression indicates that compressibility may be
achieved. Again the main feature is processing time.

Table.2.Comparison Between AES & KAES for a text
file

Table3.Comparison Between AES & KAES for an
audio file

Table4.Comparison Between AES & KAES for an
image

Several tests have been conducted to observe the
performance of KAES. Below experimental results

Measure Plaintext AES KAES
Entropy

(bits/byte)
4.7854 7.9362 7.9443

Optimum
compression

40% 0% 0%

2χ distribution 0.01% 25% 50%
Arithmetic
mean value

87.996 123.78 128.87

Monte Carlo
value for Pi

(3.1417)

4.0 3.2416 3.0631

Serial
correlation
coefficient

0.1808 0.0024 -0.0023

Processing
time

 20.75s 20.29s

Measure Plaintext AES KAES
Entropy (Bits

/byte)
4.4218 7.9840 7.9820

Optimum
compression

44% 0% 0%

2χ distribution 0.01% 50% 11%
Arithmetic
mean value

126.200 128.69 126.07

Monte Carlo
value for Pi

3.99 3.1175 3.2008

Serial
correlation
coefficient

-0.0820 0.0038 0.0043

Processing
time

 74.438s 23.547s

 Plaintext AES KAES
Entropy (Bits /

byte)
3.67435 7.2802 7.1697

Optimum
compression

54% 8% 10%

2χ distribution 0.01% 0.01% 0.01%
Arithmetic
mean value

182.397 126.66 127.28

Monte Carlo
value for Pi

(3.1416)

0.5687 3.1346 3.3158

Serial
correlation
coefficient

0.6128 -0.075 0.0217

Processing time 362.73s 39.48s

SETIT2005

achieved for a plaintext of 16 bytes all zeros, and only
one bit complemented at a time, a sample of the
plaintext and its corresponding ciphertext is shown in
Table.5.

Table.5. Plaintext & Ciphertext sample

Plaintext: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00

Ciphertext: 50 94 43 9C F4 BE 6E F4 9C 67 1E E4
54 33 4B 95

Plaintext: 80 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00

Ciphertext: F9 BA D3 C6 E6 C4 A8 1A 8E 4A AA
7D A0 B5 F0 9E

Plaintext: 01 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00

Ciphertext: 10 18 0C 6E A3 4A EE 28 BA 7B 25 1C
2F A6 68 0C

Fig.4. shows the Pearson’s correlation coefficient

of plaintext and its corresponding ciphertext, that
provides a measure of how the two affect one another,
i.e. how much one of them depends on the other.

Fig.4.Correlation Coefficient.

It could be noticed that, the correlation coefficient
values indicate a degree of linear dependence between
the plaintext bits and the ciphertext bits as shown in
Fig.4.

To measure confusion and diffusion, we applied
avalanche effect and completeness principle on the
same plaintext and it’s ciphertext stated above. It can
be observed that complementing one bit of the
plaintext results in an average change of the ciphertext
bits as depicted in Fig.5. Also the number of
avalanche vectors that had more than one half of its
bits changed was 73 and is more than one half 128-bit
pairs.

Fig.6. plots the P-value of the frequency test of
both the plaintext and cipher, almost the P-value of the
ciphertext is more than 0.01, we conclude that the
sequence is random

Fig.5.Number of ciphertext bits changed when
complementing one bit of plaintext

Fig.6.Frequency Test

The P-value for frequency test within a block of size
12-bits indicates that the sequence of the ciphertext is
random as illustrated in Fig.7.

Fig.7.Frequency Test within a Block

Runs test focus on the total number of runs in the
sequence, where a run is an uninterrupted sequence of
identical bits, i.e. determine the oscillation between
zeros and ones is too fast or too slow, as shown in
Fig.8. Where P-value of ciphertext exceeds the
threshold value 0.01, and thus the sequence is random.

0 20 40 60 80 100 120 140

State

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

-0.6

-0.8

-1

P_
V

al
ue

Ciphertext Plaintext Threshold

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

-0.6

-0.8

-1

ciphertext plaintext Threshold

SETIT2005

Fig.8.Runs Test

The longest run of ones in a block of size 16 bit
determine whether the length of the longest run of
ones within the tested sequence is consistent with the
length of the longest run of ones that would be
expected in a random sequence. Fig.9. depicts the P-
value which is greater than 0.01, thus we can conclude
that the sequence is random.

Conclusion
KAES doesn’t contradict the security of the AES

algorithm. We tried to keep all the mathematical
criteria for AES without change. We improved the
security of AES by employing the key to be the main
parameter of the algorithm.

References
(Daemen 1998) Joan Daemen, Vincent Rijmen, “AES

Proposal: Rijndael”, Banksys/Katholieke Universiteit
Leuven, Belgium, AES submission, June 1998.

 http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
(ENT 2004) A Pseudorandom Number Sequence Test

Program. http://www.fourmilab.ch/random.
(Mathworks 2004) MATLAB computational environment,

www.mathworks.com
(Michael 2001) Michael Welschenbach, “Cryptography in C

and C++”, Apress, ISBN: 1-893115-66-6, 2001
(NIST 2001) A Statistical Test Suite for Random and

Pseudorandom Generators for Cryptographic
Applications”, NIST Special Publication 800-22, 2001.

(NIST 2004) NIST, Advanced Encryption Standard.
http://www.nist.gov/aes/

(Webster 1985) A. F. Webster and S. E. Tavares, “On the
Design of S-Boxes” in Advances Cryptology –
CRYPTO’85, Volume 219, Lecture Notes in Computer
Science, pages 523-534, Springer-Verlag, Berlin, 1986.

Fig.9.Longest Run of Ones within a Block

0 20 40 60 80 100 120 140

State

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

-0.6

-0.8

-1

P_
V

al
ue

Ciphertext Plaintext Threshold

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

-0.2

-0.4

-0.6

-0.8

-1

Ciphertext Plaintext Threshold

