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Abstract: In this work, the TM and TE modal equations of the guided surface waves supported by a multilayered 
structure of uniaxially anisotropic dielectrics are efficiently formulated and solved. The proposed method for 
determining the TM and TE characteristic equations leads to a concise form of these, expressed in terms of a 4x4 matrix 
multiplication, which is easily implemented. Example of a double-layered structure is used to validate the general 
expression. Numerical results for the cutoff frequencies of the surface wave modes of a five-layer isotropic structure are 
presented. Finally, a simple approximate formula for the location of the TM0 mode is also given. 
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1 Introduction 
 The surface wave modes are waves, which result 
from the existence of an interface between air and the 
dielectric substrate of a grounded microstrip structure 
(Soares & al., 1989). The study of surface wave 
excitation on microstrip antennas is justified for the 
development of better designs of these antennas. Most 
related studies formulate the TM and TE modal 
equations as two transcendental equations whose 
expressions arise in the denominators of the dyadic 
Green’s function (Pozar, 1987, Fan & al., 1992) 
Peixeiro and Barbosa (Peixeiro & al., 1992) derived 
the characteristic mode equations for single and 
double-layered grounded anisotropic dielectric 
structures. The procedure followed avoids the 
calculation of the dyadic Green’s function and leads to 
two homogeneous linear systems, the determinant of 
which give the TM and TE modal equations. When the 
number of layers is more than 2, the size of each 
system becomes large involving an important effort of 
algebraic operations. 

In this paper, a new approach to TM and TE modal 
equations of stratified planar anisotropic structure is 
presented. The proposed method provides a number of 
features both in analytical and numerical phases and 
leads to a simple 4x4 matrix multiplication, which is 
easily implemented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cross section of open stratified planar structures 

2 Analysis method 
In this section, a new approach to TM and TE 

modal equations is proposed. The geometry under 
consideration is depicted in figure 1. It consists of an 
infinitely large and perfectly conducting plane on 
which N  uniaxial anisotropic dielectrics are 
superposed in a stratified configuration. Each layer of 
thickness 1−−= jjj zzd ),...,2,1( Nj=  is characterized 
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by the free-space permeability 0µ  and a permittivity 
tensor of the form 

 [ ]jzjxjxj εεεε ,,diag0=ε  (1) 

0ε  is the free-space permittivity and diag stands for 
the diagonal matrix with the diagonal elements 
appearing between the brackets. Equation [1] can be 
specialized to the isotropic substrate by allowing 

jrjzjx εεε == . The ambient medium is air with 
constitutive parameters 0µ  and 0ε . Assuming an 
ωtie  time variations and starting from Maxwell’s 

equations in the Fourier transform domain, we can 
show that the transverse fields inside the thj  layer 

)( 1 jj zzz 〈〈−  can be written in terms of the longitudinal 
components zE~  and zH~  as (Pozar, 1987):  
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where e  and h  are, respectively, the transverse 
electric and magnetic fields in the (TM,TE) 
representation, and 
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where yxs kk yxk ˆˆ +=  and ssk k= . By substituting 
the expressions of the components zE~  and zH~  
(Pozar, 1987) into [2] and [3], we obtain 
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In equations [5] and [6], jA  and jB are two-
component unknown vectors and 
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 [ ]h
jz

e
jzjz kk ,diag=k  (7b) 

e
jzk  and h

jzk are, respectively, propagation constants 
for TM and TE waves in the thj  layer (Pozar, 1987). 
By writing [5] and [6] in the planes 1  -jzz =  and 

jzz   = , and by eliminating the unknowns jA  and jB , 
we obtain the matrix form 
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which combines e  and h  on both sides of the thj  
layer as input and output quantities. The matrix jT  is 
the matrix representation of the thj  layer in the 
(TM,TE) representation. The continuity equations for 
the tangential field components are 

 Njzz jsjs  ..., ,2,1    ,),( ),( == +− keke  (10) 

 Njzz jsjs  ..., ,2,1    ,),( ),( == +− khkh  (11) 

Using equations [8], [10] and [11], cascading the 
matrices by simple multiplication yields 
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where 

 ∏
=

=
1

     
Nj

jTΓ  (13) 

The transverse electric field must necessarily be zero 
on a perfect conductor, so that for the perfectly 
conducting ground plane we have 

 0kekeke  )0,( )0,( )0,( === +−
sss  (14) 

In the unbounded air region 
)1 and  ( ===∞〈〈 rzxN zz εεε , the electromagnetic 

field given by equations [5] and [6] should vanish at 
∞+→z , accordind to Sommerfeld’s condition of 

radiation, which yields 

 ),(  )(),( 0
++ ⋅= NssNs zz kekgkh  (15) 
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where )(0 skg  can be easily obtained from the 
expression of )( sj kg  given in equation [7a] by 
allowing 1 == jzjx εε . Combining equations [12], [14] 
and [15], we obtain the characteristic equations for the 
TM and TE surface wave modes as :  

 0ΓΓg   . 2212
0 =−  (16) 

Due to the simple formulation, there are not 
restrictions on the number of layers ; the presence of 
an arbitrary number of layers is easily included in the 
matrix product Γ . For structures with several 
dielectric layers (more than 2 layers), equation [16] is 
best to be evaluated numerically. 

3 Results and discussion 
 To validate the technique proposed in section 2, 
Equation [16] is used to derive the TM and TE modal 
equations of a substrate-superstrate configuration 
(Bouttout & al., 2000). The substrate is considered 
anisotropic while the superstrate is isotropic. With the 
present formalism, the TM and TE modal equations 
can be obtained analytically in an easy way. These 
equations can be expressed as 
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where 0zk  is the propagation constant in the air region 
(Pozar, 1987). Equations [17a] and [17b] are, 
respectively, characteristic equations for TM and TE 
waves. It is easy to check that the TM and TE modal 
equations given in equations [17a] and [17b] are the 
same to those that can be deduced from the expression 
of the dyadic Green’s function shown in (Bouttout & 
al., 2000, Eq. [14]). This validates our theory 
presented in section 2. 

 The knowledge of the cutoff frequencies of the 
surface wave modes allows to predict the propagating 
modes supported by the structure at a given operating 
frequency. The cutoff frequencies of the TE1 and TM1 
surface wave modes for the five-layer isotropic 
structure studied in (Revankar & al., 1991) are 
depicted in table 1. The operating frequency of the 
considered structure ranges from 2.5 to 4 GHz, 
consequently, only the TM0 mode with zero cutoff 
frequency is excited. Since the TM0 mode is always 
 

Table 1. Cutoff frequencies of the two first wave modes of 
an isotropic five-layer structure; 33.21 =rε , 12 =rε , 

45.23 =rε , 14 =rε , 2.25 =rε , cm158.01 =d , 
cm0762.03=d , cm0508.05 =d . 

Cutoff frequencies (GHz) Surface 
wave 
modes cm05.02 =d

cm05.04 =d  
cm3.02 =d

cm6.04 =d  
cm5.02 =d

cm16.14 =d  

TE1 20.9890 14.6349 11.9893 

TM1 41.6298 28.1435 22.7030 

 

Table 2. Comparison of exact wavenumbers and 
approximate formula results of an isotropic five-layer 
structure; 33.21 =rε , 12 =rε , 45.23 =rε , 14 =rε , 

2.25 =rε , cm158.01 =d , cm05.03 =d , cm0762.03=d , 
cm05.04 =d , cm0508.05 =d . 

Operating 
frequency (GHz)

Formula [18] Numerical 
solution of 

[16] 

2.5 1.0036418 1.0036508 

3.25 1.0061547 1.0061791 

4 1.0093231 1.0093756 

 

excited, it is a matter of interest to derive simple 
formula to predict the location of the corresponding 
wavenumber. The smoothness of the proposed 
technique allows to find closed form approximate 
formula for this mode in the limiting case of 
electrically small dielectrics. Its location is estimated 
by the following formula:  
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Note that in the case of a single layer isotropic 
dielectric slab ),1( rjzjxN εεε === , equation [18] is 
reduced to the simple expression given in (Chew & 
al., 1980). With the aim of cheking the accuracy of 
formula [18] for thin dielectrics, we compare in table 
2 the results computed from equation [18] with those 
obtained from the numerical solution of equation [16] 
for the five-layer isotropic structure investigated in 
(Revankar & al., 1991). The reported data are 
normalized with respect to 0k . The results of table 2 
clearly indicate that formula [18] offers a good 
accuracy. 

Conclusion 
 Based on a matrix representation of each dielectric 
layer, a new approach to TM and TE modal equations 
of the guided waves supported by a stratified planar 
structures has been presented. It leads to a clear and 
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easy-to-apply formalism with block matrices which 
reduces the analytical or numerical procedure to 
simple matrix multiplications. For the substrate-
superstrate configuration, the simplicity to obtain the 
analytical solutions with this new formalism has been 
shown. Numerical results for the cutoff frequencies of 
the surface wave modes of a five-layer isotropic 
structure have been presented. A simple approximate 
formula for the location of the TM0 mode is given. 
The proposed technique can be used in CAD to predict 
the propagating surface waves in stratified planar 
structures, it can be also used for seeking the 
singularities of the integrands arising in the moment 
method solution of printed antennas. 
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