
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
MARCH 27-31, 2005 – TUNISIA

Case Study: Design and Implementation of an
Ordering system using UML, Formal specification

and Java Builder
Abdellatif Tchantchane

United Arab Emirates University
Al Ain, United Arab Emirates

Phone : 971506731693
Email : Tchanlatif@hotmail.com

Abstract : This paper presents a case study of designing and implementing a sales ordering interactive system using the
best practices for requirement analysis and design. We have used UML Use Case, Class, Sequence and State diagrams
during requirement analysis and design. Formal methods is used to specify critical requirements and use cases. JBuilder
development tool was used to implement the system. In this paper we highlight the best practices for software
development and using the latest technology tools enabling us to develop a highly reusable components.
Keywords: UML, Use case diagram, Z notation, formal specification, Java

1. Introduction
The objective of this case study is to highlight the

best practices of software development phases. We
undertake the task of designing and implementing an
interactive sales ordering system with the provision of
a stock management tool. This paper will focus on the
Unified Modeling Language (UML) as a tool for
requirement specification and design. The focus also
includes the use of formal methods for the specification
of critical parts of the system. We have implemented
the system using Object-Oriented language Jbuilder
development tool.

UML is a modeling language using text and
graphical notation for specifying, visualizing,
constructing and documenting the analysis and the
design phase of the system1,2. Use case, Class,
Sequential and State diagrams are the main tools of
UML. Use case diagrams are excellent to describe the
problem domain requirements and communicating with
users. The class diagrams show the entities with their
internal structure and their relationship to other entities.
Sequence diagrams describe how objects interact and
communicate with each other. They focus on time.
State diagrams describe the possible states a particular
object can get into. The first two types of diagrams
show the static of the model while sequence and state
diagrams show the dynamic aspect of the system.

Formal methods consist of using mathematics to
record as much of the development as is practical3,4.
For the case study we are presenting in this paper, we
have used the Z notation schemas for recording critical
software specification and data design decisions. Z
specification uses a combination of logic and
elementary set theory.

2. Problem Statement Context
 The case study is based initially on the

following informal context specification: A computer
store wants to acquire an automated tool for orders.
The order is made on behalf of a registered customer.
An order consists of a number of items in the stock. The
system should keep track of the stock level of each item.
The order is either pending or serviced. The first
strategy is that an order is serviced only if the stock
level meets the request. An invoice is made at the time
of servicing the order. The second strategy is that an
invoice is based on the current item prices (the time
when the order is being serviced).

We consider further the following set of
complementary requirements regarding placed and
serviced orders:

1. An order may be placed by a single registered
customer

SETIT2005

2. A given customer may place a number of
orders

3. An order may be deleted or edited before
being serviced

4. An order must include at least one item (No
null order).

5. A given item may not be selected more than
once on the same order

6. A valid order must consist of at least one item.
7. The desired quantity of a placed item must not

be null.
8. An order is serviced when the customer is

ready to pay the integral part of the amount of
a given order

9. The order can only be serviced if the number
of units of each item ordered is in stock.

10. The customer can pay by cash or check
11. The credit card must be under the name of the

customer

12. The validity of the credit card must exceed at
least two weeks the current date of the order
servicing

13. The credit level must exceed the amount due
of the order

3- Designing with UML notations
The ordering system was designed using Use Case,

Class, Sequence and State diagrams offered by UML.

3.1. Use Case diagram

Figures 1.a, 1.b and 1.c are respectively the Use
Case diagrams for the system. The functionalities may
be classified into 3 main subsystems: Customer
registration, Inventory management and the purchasing
subsystem. The purchase includes the billing. For each
use case, besides describing the main happy scenario
we have detailed all the exceptional scenarios. Include
use cases are considered as reusable components.

Figure 1.a. Use Case diagram for Customer registration subsystem

Add a Customer

Delete a Customer

View Customers

Update
Customer

CustomerCustomer service Clerk

SETIT2005

Figure 1.b. Use Case diagram for the Inventory management subsystem

Sales Clerk Customer

 <<include>>

 <<include>>

 <<extend>> <<extend>>

Figure 1.c. Use case diagram for the purchasing subsystem

3.2. Class diagram

The class diagram is the most important entity in
object-oriented design. It is very effective in showing
what objects exist in the system and the static
relationship between the classes. Figures 2.a, 2.b and
2.c display respectively the refined class diagrams for
the customer management, the stock management and

the purchasing subsystem. The All_Customers ,
All_Items and All_Orders are container classes based
on the Standard Template Library vector. Figure 3.
displays the conceptual class diagram of the ordering
systems. It shows the relationships, multiplicities, roles
and the navigability between the various existing
entities.

Add new product

Delete a Product

View products

Update Stock Information

Inventory Clerk

Make a new Order

View orders

View order details

Edit an order

Delete an Order

Service an order

Generate an invoice

Pay by cash Pay by credit card

Update Stock

SETIT2005

 * 1

Figure 2.a Class diagram for the customer management

 * 1

Figure 2.b Class diagram of the stock management subsystem

Customer

 - name : String
 - Customer_Id : int
 - address String
 - E_mail : String
 - telephone: String

 + getName() : String
 + getAdd() : String
 + getId() : int
 + getTel() : String
 + getEmail():String

 + setName(:String)
 + setAdd(:String)
 + setId(:int)
 + setTel(:String)
 + setEmail(:String)

All_Customers

- AllCustomers Vector();

+ generate_next_id() : int
+ add_customer (:Customer)
+ size() :int
+ get_all_customers() : Vector
+ get_customer_at_index(index:int) :Customer
+ get_location_of_customer(: int) : int
+ save_to_file(filename: String) : boolean
+ read_from_file(filename: String):boolean
+ delete_customer_with_id(Cust_Id :int):boolean

Item
 - item_Code=-1:int {>0}
 - item_name : String
 - N_in_stock :int {>= 0}
 - price:float=-1 {>0}
 - N_ordered:int=0 {>=0}
 - Item_Description:String

<<constructor>>
 public
Item(nam:String,ItemCode,
 stoc,norder : int, price:float)

 + getCode():int
 + getName(): String
 + getStock():int
 + getPrice():float
 + getNordered():int
 + getDescription:String
 + setCode(int)
 + setName(String nam)
 + setStock(int stoc)
 + setPrice(float pric)
 + setNordered(int norder)
 + setDescription(String desc)

 All_Items

 - AllItems:Vector()

+ generate_next_Code():int
+ add_item(item: Item)
+ size() :int

+ delete_item_with_Code(:int):boolean
+ get_all_items() :Vector
+ Item get_item_at_index(index:int) :Item
 + get_index_of_item_with_Code(:int) :int
+ replace(item : Item, index :int) :boolean
+ save_to_file(filename: String):boolean
+ read_from_file(filename : String):Boolean
+ set_add_Amount_ordered(itemCode ,
 N_ordered :int):boolean
+ subtract_Amount_ordered(itemCode,
 N_ordered:int) :boolean
add_to_stock(itemCode, newstock
:int):boolean
subtract_from_stock(itemCode,
 stock :int):boolean

SETIT2005

* 1

Figure 2.c Class diagram for the purchasing subsystem

 is made by

• 1
•

 consist_of 1
 1..∞

 1 1

Figure 3. The conceptual class diagram of the Ordering Sale System

3.3. Sequence diagram

For each use case we constructed a sequence
diagram depicting the collaboration in time and the
overall flow of control in an object-oriented program.

Figure 4.a and figure 4.b illustrate the sequence
diagrams used to capture the behavior of respectively
the Adding a customer and the Placing an order use
cases.

Order

Order_Id
Order_Date

 Customer

Customer_Id

OrderDetail

- ItemCode
- Ordered_Quantity
- Price_at_order

Order
- order_id : int
- cust_id : int
- order_date : Date
- invoice_date : Date
- all_item_orders : Vector
- state : State=Null {normal, pending, invoiced}

+ get_cust_id(): int
+ get_order_id() :int
+ get_number_of_items : int
+ get_order_date() : Date
+ get_invoice_date :Date
 {order_date ≤invoice_date}
+ getState() : State
+get_item_order_at_index(:int): Item_Order
+get_all_items_order() : Vector
//
+set_order_id(order_id:int)
+set_cust_id(cust_id:int)
+set_state(state:int)
+insertItem(: Item_Order)
+delete_item_order(: Item_Order): boolean
+set_order_date(:Date)
+set_invoice_date(:Date)

All_Orders

-AllOrders:Vector()

+add_order(:Order)
+delete_order(:Order)
+get_order_at(:int):Order
+replace_order(:Order)

+save_to_file(filename :String)
+read_from_file(filename :String)

Item

SETIT2005

 Register
 get_customer()

 Validate Customer

 [customer_ok]

 insert_customer
 save_changes

Figure 4.a Sequence diagram for Customer registration

 Place_order
 Place_order()
 Select_customer

 get_all_items

 Display all items

 [until all items selected]

 save_order (o:Order) [at least one item selected]

Figure 4.b Sequence diagram for placing an order

3.4 State diagram

The state diagram presented in figure 5 is
constructed to show the different states of order how
these state changes are triggered.

:Frame
main :Frame_add

Customer

:ALL_
Customers :Data_Store

:Frame
main_

:Frame_
place_order

:ALL_
customers

:All_
Items

:All
Orders

SETIT2005

 Place_order Invoice_order/[all_stock_satisfied=true]

 Invoice_order/[all_stock_satisfied=false]

 Update_stock/[all_stock_satisfied=true]

 Invoice_order/[all_stock_satisfied=true]

Figure 5. Various potential states and triggering events of the order object.

4. Formal Specification of critical tasks
Though formal specification is proven to be more

useful for critical systems than for commercial
development we described the critical transactions of

the system namely placing an order and generating
invoice.

The formalization of the sales management system
is given by the following

State schema:

Figure 6.a. State schema of the sales management system.

Made Invoiced

Made Pending

Pending Made

DBSales

StockQuantity: Ν
Item : ItemCode ξ StockQuantity
OrderedQuantity : Ν+

OrderDetail: Item ξOrderedQuantity
Order : Date ξ (Customer → P OrderDetail)
All_customers : P Customer
All_items : P Item
All_orders : P Order

dom(OrderDetail) ∈ all_items
ran(Order) ≥ 1

SETIT2005

We also developed schemas based on Z notation for
critical transactions such as removing an item from
stock, placing a new order and generating an invoice.

Figure 6.b. illustrates the schema for placing a new
order.

Figure 6.b. The placing order specification schema.

5. User Interface Design
The Graphical user interface (UI) is designed using

Jbuilder Personal 7th edition. The visual design tools
provide an easy way to create a UI for a java
application. The construction of the UI uses palettes
that contain components such as buttons, text areas,
lists, tables and menus. Action listener to component
event such as mouse-click, keyboard and timers are
generated automatically by Jbuilder. The
corresponding event handler code is also easily
attached to such actions. Most syntax, semantic and

declaration related errors are signaled while code is
being written.

The designed UI provides interfaces for each of the
following:

• Registering customers
• Keeping track of the items for sale
• Keeping track of the orders
• Generating invoice

Figure 7.a is the screen shot of the customer
registration interface while figure 7.b corresponds to
placing a new order.

∆ DBSales

customer ? : Customer
details ? : P OrderDetail
todayDate ? : Date
thisorder!: Order

<<preconditions>>
customer? ∈ All_customers
ran (details?) ⊆ All_items
<<actions>>
thisorder!=(todayDate?, customer? � details ?)
All_orders’ = All_order ∪ {thisorder!}
<<postconditions>>
All_customers’= All_customers
All_items’= All_items

SETIT2005

Figure 7.a Screen shot of customer registration subsystem

Figure 7.b Screen shot for placing a new order

6. Data design
Customers, Items and Orders are persistent objects.

We have based our access to these persistent objects on
sequential files since it is very easy to read and write to
text files. Noting that data access based on sequential
text files has very limited capabilities such as allowing
records to be retrieved in any order. In our case, all

persistent objects are provided at run time. Unique keys
are generated for persistent objects created. Data
integrity is assured by a set of rules such as a customer
who has a made a given order to be serviced must not
be deleted. We made a list of all possibilities that may
cause inconsistency in the data. Such unwanted
possibilities are prevented during system
implementation.

SETIT2005

Since this is a standalone type of application,
security is not a major concern for us. But still the
system is provided with a login password facility
where no system utility may be accessed until the valid
password is entered.

6.1 System Implementation

The system is implemented using an incremental
approach. First the Customer registration is
implemented. The code for the Customer class is
generated directly from the class diagram. The
container class is provided for all functionalities that
are needed in such a way that the interface with the
GUI is made in a very straight manner. Using a very
good naming strategy during the design has enabled us
to implement the stock subsystem from the customer
subsystem with very little modification. We believe this
is due to the fact that we coded our entities as reusable
components and because the system is designed using
UML class diagrams. Sequence diagrams have enabled
us to clarify the interaction and the collaboration of not

only persistent objects but also the GUI frames
required to achieve a single use case.

6.2 Testing phase

Testing phase is the most critical one of the
development process and is an integral part of every
aspect of the development cycles. UML use case
diagram were used to test against functional and
exceptional cases. Though the testing method in
isolation of the object order was not possible, UML
state diagrams were used as a guideline where every
transition is tested. Z notation schemas are used as
formal documents for defining preconditions and post-
conditions of every critical transaction by the system.
Since this is an interactive system we have use the Java
try catch exception handler around every input from
user and for every type-conversion. This defensive
approach prevents the system from crashing because of
illegal inputs. The implementation of the invoice
generation use case is given by figure 8.

7. Conclusion
We successfully implemented the Sales ordering

system as described in this paper. The first lesson
learned is that UML use case diagrams are proven to be
valuable for eliciting information about system
functional requirements and communicating with
potential users. They also helped to us distinct between
functional and non-functional requirements. Use case
diagrams were used during system verification stage to

test that all the functionalities are implemented. Class
diagrams are used for the purpose of designing and
implementing our system in an object-oriented
approach. The code for persistent object was directly
generated from their respective class diagrams.
Formalization of the system state has helped us to
rigorously understand the entities and relationships that
may exist in the system. Future work relating to this
system implemented based on UML design would be
the investigation of what are the necessary
modifications in case the system is changed from

SETIT2005

sequential file based system to let’s say to Oracle
database system.

References
1. G. Booch, J. Rumbaugh and I. Jacobson, The

unified Modeling Language User Gude, Addison
Wesley, 1999.

2. M. Fowler, UML Distilled:Applying the standard
object Modeling Notation, Addison Wesley, 1997.

3. J.B. Wordsworth, Software development with Z,
Addison-Wesley (1992)

4. J.M. Spivey, The Z Notation : A reference manual,
Prentice Hall International (1992).

