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Abstract—This paper addresses the recovery of an image
from its multiple noisy copies using a nonparametric Bayesian
estimator in the wavelet domain. Boubchir et al have proposed
a prior statistical model based on the α-stable densities adapted
to capture the sparseness of the wavelet detail coefficients. They
used the scale mixture of Gaussians theorem as an analytical
approximation for α-stable densities, which is not known in
general, in order to obtain a closed-form expression of their
Bayesian denoiser. Since the proposed estimator has worked well
for one copy of corrupted image, we consider its extension to
multiple copies in this paper. So, our contribution is to design
two fusion structures based on the Bayesian denoiser and the
traditional averaging operation, in order to combine all multiple
noisy image copies to recover the noise free image. Because of the
nonlinearity of the Bayesian denoiser, averaging then Bayesian
denoising or Bayesian denoising then averaging will produce
different estimators. We will demonstrate the effectiveness of our
Bayesian denoiser fusion structures compared to other denoising
approaches. Better performance comes at the expense of higher
complexity.

Index Terms—Denoising, Bayesian estimation, α-stable distri-
bution, multiple noisy copies, wavelets.

I. INTRODUCTION

Due to the imperfection of image acquisition systems and
transmission channels, images are often corrupted by noise.
This degradation leads to a significant reduction of image
quality and then makes more difficult to perform high-level
vision tasks such as recognition, 3-D reconstruction, or scene
interpretation. In most cases, this corruption is commonly
modeled by a zero-mean additive white Gaussian random noise
leading to the following additive degradation model:

g = x+ ε (1)

where g, x and ε represent respectively the noisy observed
image (of size M pixels), the clean image and the corrupting
additive white stationary Gaussian noise (AWGN) with vari-
ance σ2. The problem of recovering x from g is usually known
as a denoising problem. This problem is a typical instance
of an inverse problem where the solution must consider
prior knowledge of the distribution of x. Hence, the prior
distribution of natural images or of any other specific class

of images plays a key role in any denoising approach. A
common approach for modeling the statistical prior of natural
images is to estimate their statistical distribution in a transform
domain. This is often implemented using some type of wavelet
transform. In this context, many researchers have investigated,
over the last decade, wavelet-based denoising estimators [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. A key
underlying characteristic in many of these estimators is the
ability of wavelet functions to capture effectively the local
features of the processes being modeled.

Hence, in the field of statistics for example, wavelets have
been used primarily to deal with problems of a nonparametric
character, such as those arising frequently in the context of
regression analysis, or when estimating functions such as den-
sities, spectral densities or hazard rates. Most of the wavelet-
based denoising estimators have been developed based on
Donoho & Johnstone’s work [1]. Since then, various Bayesian
approaches for nonlinear wavelet shrinkage estimators have
been developed recently, and various priors have been pro-
posed to model the statistical behavior of the noiseless wavelet
coefficients. These estimators impose a prior distribution on
wavelet coefficients designed to capture the sparseness of the
wavelet expansions. Then the image is estimated by applying
a Bayesian rule to the resulting posterior distribution of the
wavelet coefficients. Simoncelli et al. [13] developed non-
linear estimators, based on formal Bayesian theory, which
outperform classical linear processors and simple thresholding
estimators in removing noise from visual images. They used
a generalized Laplacian model for the subband statistics of
the signal and developed a noise-removal algorithm, which
performs a ”coring” operation to the data. In recent works [14],
[15], it has been shown that α-stable distributions, a family
of heavy-tailed densities, are sufficiently flexible and rich to
appropriately model wavelet coefficients of images. However,
the derived Bayesian estimator proposed in [14], has no closed
analytical form in general situation. More recently, in [16],
[17], [18], [20], the Bessel K forms (BKF) family has been
successfully proposed in wavelet-based Bayesian denoising. In
that work, a closed-form expression of the L2-loss Bayesian



shrinkage rule associated with the BKF prior was proposed.
In [21], [22], [23], Boubchir et al proposed a prior statistical
model based on the α-stable densities adapted to capture the
sparseness of the wavelet detail coefficients. Specifically, they
used the finite mixture of Gaussians as a fast and numerically
stable analytical approximation for α-stable densities in order
to obtain closed-form expressions for the Bayesian denoiser.
In many applications there are multiple copies of the same or
similar images, thus it is interesting to extend the Bayesian
denoiser to multiple corrupted copies, in order to obtain the
most noise-free copy possible. We address this issue in this
paper. So, we propose two approaches based on the Bayesian
denoiser and averaging operation, to combine the available
noisy copies. Because of the nonlinearity of the Bayesian
denoiser, averaging then Bayesian denoising or Bayesian de-
noising then averaging produce different estimators. One novel
aspect of this work is that here the Bayesian denoiser and
averaging operation are combined to be used in two parallel
fusion structures, to enhance the quality of the recovered
image, especially in low SNRs. As will be shown, simulation
results demonstrate that the denoising performance can be
improved significantly by the developed approaches. The later
are better suited for low SNRs and are highly efficient, and
inherently robust. The remainder of this paper is organized
as follows: The proposed denoising structures are described
in Section II. In Section III, we present a set of simulation
results and comparisons with existing denoising techniques.
Finally, conclusions are drawn in Section IV.

II. BAYESIAN DENOISING ALGORITHM FOR MULTIPLE
NOISY COPIES

A. Wavelet-based Bayesian Denoising

Let x = {xij} denote the matrix of the original image to
be recovered. The signal has been transmitted over a Gaussian
additive noise channel K times, and at the receiver we have
K copies of noisy observations,

g(k) = x+ ε(k), k = 1, . . . ,K (2)

For the kth copy, ε(k) are iid Gaussian N(0, σ2) where σ2 is
the noise variance of the kth copy. The noise samples between
different copies are assumed independent. The recovery of the
image is done in the orthogonal wavelet transform domain
(the readers are referred to standard wavelet literature such as
[24], [25] for details of the two-dimensional dyadic wavelet
transform). Let the wavelet transform of the noisy observation
g(k) = x+ ε(k) be denoted by

Y (k) = X + V (3)

The wavelet coefficients are often grouped into subbands
of different scale and orientation, with one lowest frequency
subband, and the rest called detail subbands. Namely, the
subbands HHj , HLj and LHj , j = Jc, . . . , J−1 correspond
to the detail coefficients in diagonal, horizontal and vertical
orientations, and the subband LLJc is the approximation or the
smooth component. Jc is the coarsest scale of the decomposi-
tion. The main goal, in the denoising problem, is to obtain an

estimate x̂ of x from g such that the expectation of the mean-
squared-error (MSE), i.e., E

[
‖x− x̂‖2 /M

]
is minimized.

In fact, this MSE measure, which is the simple Euclidean
distance between the original and denoised estimated image,
is also commonly proposed in the denoising community in
order to quantitatively measure the achieved performance im-
provement of a denoising technique leading to the well-known
peak signal-to-noise ratio (PSNR) expressed in decibels as
20 log10

[
255/
√

MSE
]
. The optimal regularization scheme, in

the minimum MSE sense, is closely related to the model
of the statistical prior distribution of wavelet coefficients.
Clearly, imprecise modeling of the statistical prior directly
leads to deterioration in the resulting performance. It has been
shown that the statistical behavior of the wavelet coefficients is
successfully modeled by families of heavy-tailed distributions
such as α-stable and BKF densities. We cite [22], in which
a prior statistical model based on the α-stable densities, was
proposed.

The authors used the finite mixture of Gaussians as a fast
and numerically stable analytical approximation for α-stable
densities in order to obtain closed-form expressions for their
Bayesian denoiser. Our contribution extends their results to
a more general situation, since the Bayesian denoiser has
been already successfully applied to one set of observations.
More precisely, we design two structures of fusion, in order to
obtain the most noise-free copy possible. In the first structure,
the Bayesian denoiser with the scale mixture approximation
to the α-stable prior, is firstly applied to each noisy copy
independently. So, we get a partial denoised image. The final
recovered image is then obtained by computing the average of
all denoised copies. This proposed structure can be viewed as a
parallel distributed detection fusion (DDF) Radar system with
multiple sensors and a center of fusion. Each sensor, based on
the noisy observation, makes an individual decision about the
presence or the absence of the target. The global decision is
made based on the received individual decisions according to a
specific fusion rule. While in the second structure, we compute
the mean of the wavelet coefficients of all corrupted copies.
This is done for each wavelet coefficient separately. We use
the approximate α-stable model developed in [22] as a prior
of the wavelet coefficients. We should note here, that the mean
of an α-stable random variable (RV) remains a α-stable RV
(see [26] for more details). Then we apply the nonparametric
Bayesian denoiser to estimate the fused wavelet coefficients.

We explain in the following subsection how to extend the
Bayesian denoiser to multiple corrupted copies by using two
fusion structures.

B. Symmetric α-stable PDF approximation algorithm

For the sake of clarity, we report in this section the results
found by Boubchir et al in [22].

Let Z be a α-stable RV, Z ∼ Sαz (β, δ, γ). This distribution
is completely defined by the four parameters αz , β, γ and δ,
where αZ is the characteristic exponent, taking values 0 <
αz ≤ 2, δ (with −∞ < δ ≤ +∞) is the location parameter, β



(with −1 < β ≤ +1) is the symmetric index and γ (with γ >
0) is the dispersion of the distribution. Further detail about α-
stable can be found in [26], [27]. When β = 0, Z is symmetric
α-stable SαS RV. Motivated by the above considerations, we
model the signal component of the wavelet coefficients using
the SαS distribution which is best defined by its characteristic
function:

φ(ω) = exp(jδω − γ|ω|αz ) (4)

The SαS model is suitable for describing signals that
have highly non-Gaussian statistics and its parameters can
be estimated from noisy observations. The SαS RV can be
represented as the product of a Gaussian RV and a positive
α-stable RV. Let X ∼ N(0, 2γx), that is, let X be distributed
with Gaussian distribution (αx = 2). Let Y be a positive
stable random variable, Y ∼ Sαz

2

(
−1, 0,

(
cos
(
παz
4

) 2
αz

))
and independent from X . Then Z =

√
Y X .

The algorithm that fits a SαS to observed samples
{zm}m=1,··· ,M follows the next steps:
• Step 1: Generate the characteristic function of the mixing

PDF which is positive α-stable distributed.
• Step 2: Evaluate the positive stable PDF fY at N equally

spaced points taking the inverse FFT of the characteristic
function where N is the number of Gaussians.

• Step 3: The mixing function is the PDF of the random
variable V =

√
Y which is obtained by h(vi) =

2vifY (v2i ).
• Step 4: After some substitutions, we obtain the analytical

approximation for the SαS PDF

Pα,0,0,σ(z) =

∑N
j=1 v

−1
j exp

(
− z2

4γv2j

)
fY (v2j )

√
4πγ

∑N
j=1 fY (v2j )

(5)

• Step 5: Use the EM algorithm to refine the approximation
using the observed samples zm.

C. Bayesian denoiser for one set of observations
As a first step in our approaches, we consider one corrupted

copy of the image (K = 1 in 2). Different choices of
loss function lead to different Bayesian rules and hence to
different nonlinear wavelet shrinkage and wavelet thresholding
rules. For example, it is well known that the L1-loss function
corresponds to the maximum a posteriori (MAP) estimator.
However, except some special cases of SαS distributions
(e.g. α = 2), it is not easy to derive a general analytical
form of the corresponding Bayesian shrinkage rule even with
the scale mixture approximation. Alternatively, the L2-based
Bayes rules are used which correspond to posterior conditional
means (PCM) estimates. The general expression, using the
approximate prior PDF, of the PCM estimates of the wavelet
coefficients is given as follows [22]:

X̂ = YPCM(Y |θ) =

∑
j P (j)

dσ2
j

σ2
j+σ

2
ε
Φ(Y ;σ2

j + σ2
ε )∑

j P (j)Φ(Y ;σ2
j + σ2

ε )
(6)

where θ is the hyperparameters set, θ =
{
P (j), σj , σ

2
ε

}
, and

Φ is the normal noise PDF with variance σ2
ε .
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Fig. 1. First structure of fusion A(B(.)).

D. Combining Bayesian Estimator and Averaging

1) First Structure of Fusion A(B(.)): This structure for
image denoising consists of three major modules: (i) a subband
representation function that utilizes the wavelet transform, (ii)
a Bayesian denoising algorithm based on the scale mixture
approximation to the α-stable prior and (iii) the traditional
averaging operation. As shown in Figure 1, the denoised copies
(the out puts of the Bayesian denoiser blocs) are combined
by averaging operation in order to obtain the final recovered
image. This can be summarized as follows:
• First we iterate five times, the separable wavelet de-

composition (as described in [1]) using Daubechies’
Symmlet 8 basis wavelet. This is done for each noisy
copy independently.

• Then, we model the coefficients of each subband by using
the Gaussian scale mixture approximation.

• We apply the Bayesian estimator expression given in (6),
to get sets of denoised wavelet coefficients.

• An inverse wavelet transform constructs the partial de-
noised copies x̂(i).

• Finally, the recovered image is obtained by computing
the average of all denoised copies: x̂ = 1

K

∑i=K
i=1 x̂(i),

where K is the number of available noisy copies.
This structure can be viewed as a parallel distributed detec-

tion fusion (DDF) Radar system with multiple sensors and a
center of fusion. Each sensor, based on the noisy observation,
makes an individual decision about the presence or the absence
of the target. The global decision is made based on the received
individual decisions according to a specific fusion rule. For the
proposed structure in this paper, our fusion rule, to obtain the
final noise free image, is averaging operation.

2) Second Structure of Fusion B(A(.)): As shown in Figure
2, we firstly, apply the separable wavelet decomposition for
each noisy copy. We then compute the average of the wavelet
coefficients of all noisy copies. This is done for each coef-
ficient independently. The Bayesian estimator expression (in
(6)) is applied to the averaged wavelet coefficients in order
to obtain the denoised ones. An inverse wavelet transform
constructs the recovered image. We should note here that
this structure requires much less computation than the first
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Fig. 2. Second structure of fusion B(A(.)).

structure (since we compute the wavelet transform and the
Bayesian estimation one time, whereas the latter computes it
K times). However, the estimation of wavelet coefficients of
each individual copy of the image may be advantageous. It is
possible that a different noisy copy is collected and processed
at each receiving station, and only this processed copy is
kept. At a later time, these separately processed copies can
be collected by a central receiver to yield one better copy.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we show simulation results obtained by
processing noisy copies generated from the test images: Lena,
Boat, Barbara and House. In order to obtain K noisy copies,
we degraded the original test images by adding the zero-mean
Gaussian noise K times. We compared the results of our
approach with four denoising algorithms. The first denoising
algorithm is the classical Wiener filter. The Wiener filter is
the wiener2 routine from the Matlab image processing toolbox,
with the adaptation window size set to the default (3×3). The
second denoising algorithm is the wavelet shrinkage denoising
using soft thresholding [1]. The soft thresholding scheme was
developed using Daubechies’ Symmlet 4 mother wavelet. The
maximum number of wavelet decompositions we used was
five. The third denoising algorithm is the PCM Bayesian
denoiser developed for one noisy copy (denoted by α-stable in
the curves) [22]. The fourth denoising algorithm denoted by
A(T) and T(A), was proposed in [28]. In order to quantify
the achieved performance improvement, two measures were
computed based on the original and the denoised data. Namely,
we used the mean-square-error and the signal-to-mean-square-
error commonly called the SNR. It is defined in decibels as
follows:

SNR = 10 log10

( ∑
g2∑

(ĝ − g)2

)
(7)

where g is the original image, and ĝ is the recovered image.
We have assumed homogeneous noise variances, i.e., the case
when the noise variances are equals. The case of heteroge-
neous noise variances is not considered here. In Figures 3 and
4, we compare the MSE and the SNR, for K ranging from
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Fig. 3. For the test images Boat and Barbara, comparing as a function of
K, the MSE of the two proposed fusion structures (B(A(.)) and A(B(.)))
and wiener filter for σε = 20 (an averaging of 50 simulations).

1 to 25, of the two proposed structures of fusion and wiener
filter. The test images used are Boat and Barbara.

In these figures, one can clearly see the improvement
obtained by the two proposed algorithms (a lower bound for
the MSE result and a higher value for the SNR), especially for
K > 5. For 1 < K < 5, the proposed fusion structures pro-
duce approximately the same improvements in terms of MSE
and SNR. Among these denoising algorithms, the proposed
structure, B(A(.)) is the best in terms of MSE and SNR,
even better than T(A(.)) (see Figure 5) and better than the
bayesian denoiser developed for one available noisy copy (see
Figure 6).

Figure 7(a) shows the estimated images for each denoising
methods for the Barbara image with σε = 30. One can clearly
see that the visual quality of the B(A(.)) is superior to the
other methods but remains comparable to the A(B(.)). This
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Fig. 4. For the test images Boat and Barbara, comparing as a function of
K, the SNR of the two proposed fusion structures (B(A(.)) and A(B(.)))
and wiener filter for σε = 20 (an averaging of 50 simulations).

general behavior is also observed on Boat and House test
images (Figure 7(b) and (c)). The B(A(.)) algorithm requires
the least amount of computation since it can be implemented
with only one wavelet transform and one Bayesian estimation
and seems to work well for large values of σε as well. Thus, in
practice, A(B(.)) method suffices to use Bayesian estimation
approaches to combine multiple noisy copies.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we have presented new denoising algorithms
which are based on a nonlinear nonparametric Bayesian esti-
mator in the orthogonal wavelet domain, in the case of multiple
noisy copies. We explored the idea of combining the Bayesian
denoiser developed in [22] with the more traditional averaging
operation by using two fusion structures. We have used the
PCM Bayesian denoiser in our fusion structures because of
its closed-form expression. We can note that the proposed
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Fig. 5. MSE versus K of the denoising algorithms B(A(.)) and T(A(.)),
for the test image Lena, σε = 25.
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Fig. 6. MSE versus σε, for the test image Boat with K = 15, of the
denoising algorithms: B(A(.)), A(B(.)), Bayesian denoiser (α-stable) and
soft thresholding (Dohoho [1]).

structures perform very competitively among the wavelet-
based denoising state-of-the-art methods and competitively
among the Bayesian estimators developed for one noisy copy.
The performances of B(A(.)) structure are superior to those of
A(B(.)) structure in terms of MSE, SNR and visual quality.
For computational reason, averaging followed by Bayesian
estimation is recommended.

Our future work will focus on the application of other
Bayesian estimators (such as the PCM and MAP Bayesian
estimators based on the BKF densities [16], [17], [19]) with the
oriented sparse multiscale transforms, mainly the geometrical
X-lets (such as curvelets, contourlets and bandelets) in the
context of proposed structures.

Furthermore, there is ongoing work on the application of
this method in the denoising of optical soundtracks of old
movies [29], [30].

larbi
Stamp
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Fig. 7. Visual comparison of various denoising methods on the test images: Barbara, Boat and Lena, with K = 25 (over 50 runs).
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